Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of miR-200c/141 expression by intergenic DNA-looping and transcriptional read-through.

Nature communications | 2016

The miR-200 family members have been implicated in stress responses and ovarian tumorigenesis. Here, we find that miR-200c/141 transcription is intimately linked to the transcription of the proximal upstream gene PTPN6 (SHP1) in all physiological conditions tested. PTPN6 and miR-200c/141 are transcriptionally co-regulated by two complementary mechanisms. First, a bypass of the regular PTPN6 polyadenylation signal allows the transcription of the downstream miR-200c/141. Second, the promoters of the PTPN6 and miR-200c/141 transcription units physically interact through a 3-dimensional DNA loop and exhibit similar epigenetic regulation. Our findings highlight that transcription of intergenic miRNAs is a novel outcome of transcriptional read-through and reveal a yet unexplored type of DNA loop associating two closely located promoters. These mechanisms have significant relevance in ovarian cancers and stress response, pathophysiological conditions in which miR-200c/141 exert key functions.

Pubmed ID: 26725650 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


The Cancer Genome Atlas (tool)

RRID:SCR_003193

Project exploring the spectrum of genomic changes involved in more than 20 types of human cancer that provides a platform for researchers to search, download, and analyze data sets generated. As a pilot project it confirmed that an atlas of changes could be created for specific cancer types. It also showed that a national network of research and technology teams working on distinct but related projects could pool the results of their efforts, create an economy of scale and develop an infrastructure for making the data publicly accessible. Its success committed resources to collect and characterize more than 20 additional tumor types. Components of the TCGA Research Network: * Biospecimen Core Resource (BCR); Tissue samples are carefully cataloged, processed, checked for quality and stored, complete with important medical information about the patient. * Genome Characterization Centers (GCCs); Several technologies will be used to analyze genomic changes involved in cancer. The genomic changes that are identified will be further studied by the Genome Sequencing Centers. * Genome Sequencing Centers (GSCs); High-throughput Genome Sequencing Centers will identify the changes in DNA sequences that are associated with specific types of cancer. * Proteome Characterization Centers (PCCs); The centers, a component of NCI's Clinical Proteomic Tumor Analysis Consortium, will ascertain and analyze the total proteomic content of a subset of TCGA samples. * Data Coordinating Center (DCC); The information that is generated by TCGA will be centrally managed at the DCC and entered into the TCGA Data Portal and Cancer Genomics Hub as it becomes available. Centralization of data facilitates data transfer between the network and the research community, and makes data analysis more efficient. The DCC manages the TCGA Data Portal. * Cancer Genomics Hub (CGHub); Lower level sequence data will be deposited into a secure repository. This database stores cancer genome sequences and alignments. * Genome Data Analysis Centers (GDACs) - Immense amounts of data from array and second-generation sequencing technologies must be integrated across thousands of samples. These centers will provide novel informatics tools to the entire research community to facilitate broader use of TCGA data. TCGA is actively developing a network of collaborators who are able to provide samples that are collected retrospectively (tissues that had already been collected and stored) or prospectively (tissues that will be collected in the future).

View all literature mentions

UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

GeneCopoeia (tool)

RRID:SCR_003145

Commercial organization which provides reagents and services for molecular biology research. Its services include clone collections, microRNA solutions, genome editing, qPCR products, and fluorescent labeling and detection.

View all literature mentions

Applied Biosystems (tool)

RRID:SCR_005039

An Antibody supplier

View all literature mentions

SK-OV-3 (tool)

RRID:CVCL_0532

Cell line SK-OV-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions