Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anabolic steroids alter the physiological activity of aggression circuits in the lateral anterior hypothalamus.

Neuroscience | 2016

Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS-treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure.

Pubmed ID: 26691962 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDA NIH HHS, United States
    Id: R01 DA010547
  • Agency: NIDA NIH HHS, United States
    Id: R29 DA010547
  • Agency: NIDA NIH HHS, United States
    Id: R01 DA10547

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Offline Sorter (tool)

RRID:SCR_000012

Offline spike sorting software. This software tool for viewing and classifying action potential waveforms (spikes) previously collected from single electrodes, stereotrodes and tetrodes accepts file types from many data acquisition companies and software programs.

View all literature mentions

NeuroExplorer (tool)

RRID:SCR_001818

Data analysis software for neurophysiology with a multitude of features, including: * Import of native data files created by many popular data acquisition systems * All standard histogram and raster analyses * Shift predictors in crosscorrelograms and color markers in perievent rasters * Joint PSTH, burst analysis and many more analyses of timestamped data * Spectral analysis of spike and continuous data * 3D data view and animation * Fully customizable WYSIWYG graphics * Custom analysis and batch mode processing with internal scripting language * Direct data link to Matlab and Excel * Statistical tests via direct link to R-project

View all literature mentions