Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines.

BMC genomics | 2015

Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes.

Pubmed ID: 26678836 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

agriGO (tool)

RRID:SCR_006989

A web-based tool and database for the gene ontology analysis. Its focus is on agricultural species and is user-friendly. The agriGO is designed to provide deep support to agricultural community in the realm of ontology analysis. Compared to other available GO analysis tools, unique advantages and features of agriGO are: # The agriGO especially focuses on agricultural species. It supports 45 species and 292 datatypes currently. And agriGO is designed as an user-friendly web server. # New tools including PAGE (Parametric Analysis of Gene set Enrichment), BLAST4ID (Transfer IDs by BLAST) and SEACOMPARE (Cross comparison of SEA) were developed. The arrival of these tools provides users with possibilities for data mining and systematic result exploration and will allow better data analysis and interpretation. # The exploratory capability and result visualization are enhanced. Results are provided in different formats: HTML tables, tabulated text files, hierarchical tree graphs, and flash bar graphs. # In agriGO, PAGE and SEACOMPARE can be used to carry out cross-comparisons of results derived from different data sets, which is very important when studying multiple groups of experiments, such as in time-course research. Platform: Online tool

View all literature mentions

htseq-count (tool)

RRID:SCR_011867

Script distributed with the HT-Seq Python framework for processing RNA-seq or DNA-seq data.

View all literature mentions

TopHat (tool)

RRID:SCR_013035

Software tool for fast and high throughput alignment of shotgun cDNA sequencing reads generated by transcriptomics technologies. Fast splice junction mapper for RNA-Seq reads. Aligns RNA-Seq reads to mammalian-sized genomes using ultra high-throughput short read aligner Bowtie, and then analyzes mapping results to identify splice junctions between exons.TopHat2 is accurate alignment of transcriptomes in presence of insertions, deletions and gene fusions.

View all literature mentions