Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress.

Proceedings of the National Academy of Sciences of the United States of America | 2015

Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7(Δpan) mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7(Δpan) mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7(Δpan) mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures.

Pubmed ID: 26512112 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: P41 GM103412
  • Agency: NIDDK NIH HHS, United States
    Id: P01 DK098108
  • Agency: NIGMS NIH HHS, United States
    Id: GM103412
  • Agency: NIEHS NIH HHS, United States
    Id: P42 ES010337
  • Agency: NIDDK NIH HHS, United States
    Id: DK098108
  • Agency: NIGMS NIH HHS, United States
    Id: P41 GM103426
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA019730
  • Agency: NIEHS NIH HHS, United States
    Id: ES010337
  • Agency: NIGMS NIH HHS, United States
    Id: GM103426
  • Agency: NCI NIH HHS, United States
    Id: R01 CA163798
  • Agency: NIAAA NIH HHS, United States
    Id: AA019730

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Center for Microscopy and Imaging Research (tool)

RRID:SCR_002655

Biomedical technology research center that develops computer-aided, advanced microscopy for the acquisition of structural and functional data in the dimensional range of 1 nm to 100 um, a range encompassing macromolecules, subcellular structures and cells. Novel specimen-staining methods, imaging instrumentsincluding intermediate high-voltage transmission electron microscopes (IVEMs) and high-speed, large-format laser-scanning light microscopesand computational capabilities are available for addressing mesoscale biological microscopy of proteins and macromolecular complexes in their cellular and tissue environments. These technologies are developed to bridge understanding of biological systems between the gross anatomical and molecular scales and to make these technologies broadly available to biomedical researchers. NCMIR provides expertise, infrastructure, technological development, and an environment in which new information about the 3D ultrastructure of tissues, cells, and macromolecular complexes may be accurately and easily obtained and analyzed. NCMIR fulfills its mission through technology development, collaboration, service, training, and dissemination. It aims to develop preparative methods and analytical approaches to 3D microscopy applicable to neurobiology and cell biology, incorporating equipment and implementing software that expand the analysis of 3D structure. The core research activities in the areas of specimen development, instrument development, and software infrastructures maximize the advantages of higher voltage electron microscopy and correlated light microscopies to make ambitious imaging studies across scales routine, and to facilitate the use of resources by biomedical researchers. NCMIR actively recruits outside users who will not only make use of these resources, but who also will drive technology development and receive training.

View all literature mentions