2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Exercise and Regulation of Carbohydrate Metabolism.

Progress in molecular biology and translational science | 2015

Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits.

Pubmed ID: 26477909 RIS Download

Associated grants

  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR042238
  • Agency: NIDDK NIH HHS, United States
    Id: R01-DK099511
  • Agency: NIAMS NIH HHS, United States
    Id: R01-AR42238
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK101043
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK099511
  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK036836
  • Agency: NIDDK NIH HHS, United States
    Id: K01 DK105109
  • Agency: NIDDK NIH HHS, United States
    Id: 5P30 DK36836
  • Agency: NIDDK NIH HHS, United States
    Id: K01-DK105109
  • Agency: NIDDK NIH HHS, United States
    Id: R01-DK101043

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Joslin Diabetes Center Bioinformatics and Biostatistics Core (tool)

RRID:SCR_015092

Core that offers support for data-driven projects related to basic, clinical and translational research, with a particular emphasis on diabetes. The core aims to ensure that researchers take advantage of the most modern and robust methods available in the field of Bioinformatics and Biostatistics.

View all literature mentions

Joslin Diabetes Center Flow Cytometry Core Facility (tool)

RRID:SCR_009878

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27,2023. Core that provides cell sorting and flow cytometry services. Specific services include cell analysis, large object sorting,magnetic cell enrichment, and automatic cell counting.

View all literature mentions

Joslin Diabetes Center Advanced Microscopy Core Facility (tool)

RRID:SCR_009875

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27,2023. Core that provides services for performing specific morphological procedures, providing training and access to equipment, maintaining the specialized microscopes, and giving advice and interpretation.

View all literature mentions

Joslin Diabetes Center Animal Physiology Core Facility (tool)

RRID:SCR_009876

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27,2023. Core that provides technically advanced physiological evaluation of metabolism in diabetes, obesity, and their associated complications in rodents for DRC investigators and outside users. It also provides training of investigators and trainees in several physiological procedures.

View all literature mentions

Joslin Diabetes Center Advanced Genomics and Genetics Core Facility (tool)

RRID:SCR_009873

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27,2023. Core that provides services for genetic and genomic analysis, including DNA extraction from blood, access to DNA collections from the Core?s repository, SNP genotyping, and support for gene expression studies based on both high-density oligonucleotide arrays and real-time quantitative PCR.

View all literature mentions

Joslin Diabetes Center Induced Pluripotent Stem Cell Core (tool)

RRID:SCR_015120

Core that maintains a centralized facility for the generation and propagation of reprogrammed iPS cells for use in molecular and cellular pathologies underlying diabetes and its complications.

View all literature mentions

Joslin Diabetes Center Enrichment Core (tool)

RRID:SCR_015094

Six component core which facilitates the exchange of research information and discussions among investigators, fellows and students within the Joslin Diabetes Center, as well as between Joslin Staff and outside researchers with similar interests.

View all literature mentions