Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Microphthalmia-associated transcription factor mutations are associated with white-spotted coat color in swamp buffalo.

Animal genetics | 2015

A candidate gene analysis of the microphthalmia-associated transcription factor (MITF) gene was used in an attempt to identify the genetic basis for a white-spotted coat color phenotype in the Asian swamp buffalo (Bubalus bubalis carabanensis). Ninety-three buffaloes-32 solid, 38 spotted and 23 white individuals-were Sanger-sequenced for all MITF exons as well as highly conserved intronic and flanking regions. MITF cDNA representing skin and iris tissue from six spotted, nine solid and one white buffaloes was also Sanger-sequenced to confirm detected mutations. Two independent loss-of-function mutations, a premature stop codon (c.328C>T, p.Arg110*) and a donor splice-site mutation (c.840+2T>A, p.Glu281_Leu282Ins8), both of which cause white-spotted coat color in swamp buffaloes, were identified. The nonsense mutation leads to a premature stop codon in exon 3, and likely removal of the resulting mRNA via nonsense-mediated decay pathway, whereas the donor splice-site mutation leads to aberrant splicing of exon 8 that encodes part of a highly conserved region of MITF. The resulting insertion of eight amino acid residues is expected to perturb the leucine zipper part in the basic helix-loop-helix leucine zipper (bHLH-Zip) domain and will most likely influence dimerization and DNA binding capacity. Electrophoretic mobility shift assay was performed using mutant and wild-type MITF proteins and showed that the mutant MITF protein resulting from the splice-site mutation decreased in vitro DNA binding capacity compared to wild-type MITF. White-spotted buffalo bulls are sacrificed in funeral ceremonies in Tana Toraja, Indonesia, because they are considered holy, and our results show that genetic variation causes a tie to the cultural use of these buffaloes.

Pubmed ID: 26417640 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Nucleotide Archive (ENA) (tool)

RRID:SCR_006515

Public archive providing a comprehensive record of the world''''s nucleotide sequencing information, covering raw sequencing data, sequence assembly information and functional annotation. All submitted data, once public, will be exchanged with the NCBI and DDBJ as part of the INSDC data exchange agreement. The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. A typical workflow includes the isolation and preparation of material for sequencing, a run of a sequencing machine in which sequencing data are produced and a subsequent bioinformatic analysis pipeline. ENA records this information in a data model that covers input information (sample, experimental setup, machine configuration), output machine data (sequence traces, reads and quality scores) and interpreted information (assembly, mapping, functional annotation). Data arrive at ENA from a variety of sources including submissions of raw data, assembled sequences and annotation from small-scale sequencing efforts, data provision from the major European sequencing centers and routine and comprehensive exchange with their partners in the International Nucleotide Sequence Database Collaboration (INSDC). Provision of nucleotide sequence data to ENA or its INSDC partners has become a central and mandatory step in the dissemination of research findings to the scientific community. ENA works with publishers of scientific literature and funding bodies to ensure compliance with these principles and to provide optimal submission systems and data access tools that work seamlessly with the published literature. ENA is made up of a number of distinct databases that includes the EMBL Nucleotide Sequence Database (Embl-Bank), the newly established Sequence Read Archive (SRA) and the Trace Archive. The main tool for downloading ENA data is the ENA Browser, which is available through REST URLs for easy programmatic use. All ENA data are available through the ENA Browser. Note: EMBL Nucleotide Sequence Database (EMBL-Bank) is entirely included within this resource.

View all literature mentions