Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Age-related changes of inactivating BK channels in rat dorsal root ganglion neurons.

Journal of the neurological sciences | 2015

The large-conductance, voltage- and Ca(2+)-activated K(+) channels (termed BK) are associated with age-related dysfunctions or diseases. Previously, with our colleagues, we reported that the rβ2-associated inactivating BK (BKi) channels play an essential role in rat dorsal root ganglion (DRG) neurons. However, the age-dependent changes in BKi channels are still elusive. Here, we identify three types of BK channels in small DRG neurons, the single exponential BKi, the double exponential BKi and the non-inactivating BK. Interestingly, compared to the increased occurrence of the non-inactivating BK, the presence of BKi channels declined with age. Furthermore, the peak amplitude of the single exponential BKi current increased from infancy to youth, but decreased from youth to old age. The inactivation time constant, however, did not change with age. The double exponential BKi also displayed age-related change in current amplitude with an intricate kinetics. Physiologically, the decay speed of the action potential was significantly increased in Youth, which correlated with the change of current amplitude of BKi channels. Collectively, these results reveal an age-related change pattern of BKi channels in small DRG neurons, providing potential mechanistic clues for different susceptibility to sensation in different ages.

Pubmed ID: 26341151 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions