Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in Drosophila.

PLoS genetics | 2015

Sex chromosomes evolve distinctive types of chromatin from a pair of ancestral autosomes that are usually euchromatic. In Drosophila, the dosage-compensated X becomes enriched for hyperactive chromatin in males (mediated by H4K16ac), while the Y chromosome acquires silencing heterochromatin (enriched for H3K9me2/3). Drosophila autosomes are typically mostly euchromatic but the small dot chromosome has evolved a heterochromatin-like milieu (enriched for H3K9me2/3) that permits the normal expression of dot-linked genes, but which is different from typical pericentric heterochromatin. In Drosophila busckii, the dot chromosomes have fused to the ancestral sex chromosomes, creating a pair of 'neo-sex' chromosomes. Here we collect genomic, transcriptomic and epigenomic data from D. busckii, to investigate the evolutionary trajectory of sex chromosomes from a largely heterochromatic ancestor. We show that the neo-sex chromosomes formed <1 million years ago, but nearly 60% of neo-Y linked genes have already become non-functional. Expression levels are generally lower for the neo-Y alleles relative to their neo-X homologs, and the silencing heterochromatin mark H3K9me2, but not H3K9me3, is significantly enriched on silenced neo-Y genes. Despite rampant neo-Y degeneration, we find that the neo-X is deficient for the canonical histone modification mark of dosage compensation (H4K16ac), relative to autosomes or the compensated ancestral X chromosome, possibly reflecting constraints imposed on evolving hyperactive chromatin in an originally heterochromatic environment. Yet, neo-X genes are transcriptionally more active in males, relative to females, suggesting the evolution of incipient dosage compensation on the neo-X. Our data show that Y degeneration proceeds quickly after sex chromosomes become established through genomic and epigenetic changes, and are consistent with the idea that the evolution of sex-linked chromatin is influenced by its ancestral configuration.

Pubmed ID: 26114585 RIS Download

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM076007
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM093182
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM101255

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI Sequence Read Archive (SRA) (tool)

RRID:SCR_004891

Repository of raw sequencing data from next generation of sequencing platforms including including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, Helicos Heliscope, Complete Genomics, and Pacific Biosciences SMRT. In addition to raw sequence data, SRA now stores alignment information in form of read placements on reference sequence. Data submissions are welcome. Archive of high throughput sequencing data,part of international partnership of archives (INSDC) at NCBI, European Bioinformatics Institute and DNA Database of Japan. Data submitted to any of this three organizations are shared among them.

View all literature mentions

RepeatMasker (tool)

RRID:SCR_012954

Software tool that screens DNA sequences for interspersed repeats and low complexity DNA sequences. The output of the program is a detailed annotation of the repeats that are present in the query sequence as well as a modified version of the query sequence in which all the annotated repeats have been masked (default: replaced by Ns). Currently over 56% of human genomic sequence is identified and masked by the program. Sequence comparisons in RepeatMasker are performed by one of several popular search engines including nhmmer, cross_match, ABBlast/WUBlast, RMBlast and Decypher. RepeatMasker makes use of curated libraries of repeats and currently supports Dfam ( profile HMM library ) and RepBase ( consensus sequence library ).

View all literature mentions

ChIP-seq (tool)

RRID:SCR_001237

Set of software modules for performing common ChIP-seq data analysis tasks across the whole genome, including positional correlation analysis, peak detection, and genome partitioning into signal-rich and signal-poor regions. The tools are designed to be simple, fast and highly modular. Each program carries out a well defined data processing procedure that can potentially fit into a pipeline framework. ChIP-Seq is also freely available on a Web interface.

View all literature mentions

UnifiedGenotyper (tool)

RRID:SCR_004710

A multiple-sample, technology-aware SNP and indel caller.

View all literature mentions

MAKER (tool)

RRID:SCR_005309

Software genome annotation pipeline. Portable and easily configurable genome annotation pipeline. Used to allow smaller eukaryotic and prokaryotic genomeprojects to independently annotate their genomes and to create genome databases. MAKER identifies repeats, aligns ESTs and proteins to genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence based quality values.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

Picard (tool)

RRID:SCR_006525

Java toolset for working with next generation sequencing data in the BAM format.

View all literature mentions

FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions

ALLPATHS-LG (tool)

RRID:SCR_010742

Software tool as whole genome shotgun assembler that can generate high quality genome assemblies using short reads (~100bp) such as those produced by the new generation of sequencers.

View all literature mentions

TranslatorX (tool)

RRID:SCR_014733

Nucleotide sequence alignment and alignment cleaning based on amino acid information. Users can paste nt-sequences into the application and select the desired protein alignment method and the genetic code, and the option for alignment cleaning.

View all literature mentions

PAML (tool)

RRID:SCR_014932

Package of programs for phylogenetic analyses of DNA or protein sequences using maximum likelihood. PAML estimates parameters and tests hypotheses to study the evolutionary process from a phylogenetic tree.

View all literature mentions

RepeatModeler (tool)

RRID:SCR_015027

Sequence analysis software that performs repeat family identification and creates models for sequence data. RepeatModeler utilizes RepeatScout and RECON to identify repeat element boundaries and family relationships.

View all literature mentions

GeneWise (tool)

RRID:SCR_015054

Gene alignment tool from the EBI which predicts gene structure using similar protein sequences. See also the associated GenomeWise tool.

View all literature mentions