Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

EGFR/ERBB receptors differentially modulate sebaceous lipogenesis.

FEBS letters | 2015

The roles of the epidermal growth factor receptor (EGFR) in sebaceous glands remain poorly explored. We show that human sebocytes express EGFR and lower levels of ERBB2 and ERBB3, all receptors being downregulated after the induction of lipid synthesis. Nile red staining showed that siRNA-mediated downregulation of EGFR or ERBB3 increases lipid accumulation, whereas ERBB2 downregulation has no effect. Spectrometry confirmed induction of triglycerides after EGFR or ERBB3 downregulation and revealed induction of cholesteryl esters after downregulation of EGFR, ERBB2 or ERBB3. Thus, EGFR/ERBB receptors differentially modulate sebaceous lipogenesis, a key feature of sebaceous gland physiology and of several skin diseases.

Pubmed ID: 25889637 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


LIPID Metabolites And Pathways Strategy (tool)

RRID:SCR_006579

A multi-institutional effort to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major - and many minor - lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The goal of their research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Resources available include: LIPID MAPS publications, detailed biochemical pathways, improved protocols for lipid separation and quantification, analytical tools for determining lipid quantitation, structure drawing tools for automatically drawing lipid molecular structures in stereochemical detail, and experimental data. The LIPID MAPS organization includes six lipidomics core laboratories, each specialized in extracting, identifying, and quantifying one of the major categories of mammalian lipids: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, and prenol lipids. Other core laboratories and bridge projects include bioinformatics, mass spectrometric imaging, lipid synthesis, oxidized lipids, and macrophage biology and genomics.

View all literature mentions

HMDB (tool)

RRID:SCR_007712

Curated collection of human metabolite and human metabolism data which contains records for endogenous metabolites, with each metabolite entry containing detailed chemical, physical, biochemical, concentration, and disease information. This is further supplemented with thousands of NMR and MS spectra collected on purified reference metabolites.

View all literature mentions