Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nonuniform gene expression pattern detected along the longitudinal axis in the matured rice leaf.

Scientific reports | 2015

Rice (Oryza sativa) is a staple crop that supports half the world's population and an important monocot model system. Monocot leaf matures in a basipetal manner, and has a well-defined developmental gradient along the longitudinal axis. However, little is known about its transcriptional dynamics after leaf maturation. In this study, we have reconstructed a high spatial resolution transcriptome for the matured rice leaf by sectioning the leaf into seven 3-cm fragments. We have performed strand-specific Illumina sequencing to generate gene expression profiles for each fragment. We found that the matured leaf contains a longitudinal gene expression gradient, with 6.97% (2,603) of the expressed genes showing differentially expression along the seven sections. The leaf transcriptome showed a gradual transition from accumulating transcripts related to primary cell wall and basic cellular metabolism at the base to those involved in photosynthesis and energy production in the middle, and catabolic metabolism process toward the tip.

Pubmed ID: 25619793 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FASTX-Toolkit (tool)

RRID:SCR_005534

Software tool as collection of command line tools for Short-Reads FASTA/FASTQ files preprocessing.

View all literature mentions

agriGO (tool)

RRID:SCR_006989

A web-based tool and database for the gene ontology analysis. Its focus is on agricultural species and is user-friendly. The agriGO is designed to provide deep support to agricultural community in the realm of ontology analysis. Compared to other available GO analysis tools, unique advantages and features of agriGO are: # The agriGO especially focuses on agricultural species. It supports 45 species and 292 datatypes currently. And agriGO is designed as an user-friendly web server. # New tools including PAGE (Parametric Analysis of Gene set Enrichment), BLAST4ID (Transfer IDs by BLAST) and SEACOMPARE (Cross comparison of SEA) were developed. The arrival of these tools provides users with possibilities for data mining and systematic result exploration and will allow better data analysis and interpretation. # The exploratory capability and result visualization are enhanced. Results are provided in different formats: HTML tables, tabulated text files, hierarchical tree graphs, and flash bar graphs. # In agriGO, PAGE and SEACOMPARE can be used to carry out cross-comparisons of results derived from different data sets, which is very important when studying multiple groups of experiments, such as in time-course research. Platform: Online tool

View all literature mentions

FastQC (tool)

RRID:SCR_014583

Quality control software that perform checks on raw sequence data coming from high throughput sequencing pipelines. This software also provides a modular set of analyses which can give a quick impression of the quality of the data prior to further analysis.

View all literature mentions

Cufflinks (tool)

RRID:SCR_014597

Software tool for transcriptome assembly and differential expression analysis for RNA-Seq. Includes script called cuffmerge that can be used to merge together several Cufflinks assemblies. It also handles running Cuffcompare as well as automatically filtering a number of transfrags that are likely to be artifacts. If the researcher has a reference GTF file, the researcher can provide it to the script to more effectively merge novel isoforms and maximize overall assembly quality.

View all literature mentions