Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria.

Frontiers in microbiology | 2014

Previous surveys of very dry Atacama Desert mineral soils have consistently revealed sparse communities of non-photosynthetic microbes. The functional nature of these microorganisms remains debatable given the harshness of the environment and low levels of biomass and diversity. The aim of this study was to gain an understanding of the phylogenetic community structure and metabolic potential of a low-diversity mineral soil metagenome that was collected from a high-elevation Atacama Desert volcano debris field. We pooled DNA extractions from over 15 g of volcanic material, and using whole genome shotgun sequencing, observed only 75-78 total 16S rRNA gene OTUs3%. The phylogenetic structure of this community is significantly under dispersed, with actinobacterial lineages making up 97.9-98.6% of the 16S rRNA genes, suggesting a high degree of environmental selection. Due to this low diversity and uneven community composition, we assembled and analyzed the metabolic pathways of the most abundant genome, a Pseudonocardia sp. (56-72% of total 16S genes). Our assembly and binning efforts yielded almost 4.9 Mb of Pseudonocardia sp. contigs, which accounts for an estimated 99.3% of its non-repetitive genomic content. This genome contains a limited array of carbohydrate catabolic pathways, but encodes for CO2 fixation via the Calvin cycle. The genome also encodes complete pathways for the catabolism of various trace gases (H2, CO and several organic C1 compounds) and the assimilation of ammonia and nitrate. We compared genomic content among related Pseudonocardia spp. and estimated rates of non-synonymous and synonymous nucleic acid substitutions between protein coding homologs. Collectively, these comparative analyses suggest that the community structure and various functional genes have undergone strong selection in the nutrient poor desert mineral soils and high-elevation atmospheric conditions.

Pubmed ID: 25566214 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


R Project for Statistical Computing (tool)

RRID:SCR_001905

Software environment and programming language for statistical computing and graphics. R is integrated suite of software facilities for data manipulation, calculation and graphical display. Can be extended via packages. Some packages are supplied with the R distribution and more are available through CRAN family.It compiles and runs on wide variety of UNIX platforms, Windows and MacOS.

View all literature mentions

SEED (tool)

RRID:SCR_002129

The SEED is a framework to support comparative analysis and annotation of genomes. The cooperative effort focuses on the development of the comparative genomics environment and, more importantly, on the development of curated genomic data. Curation of genomic data (annotation) is done via the curation of subsystems by an expert annotator across many genomes, not on a gene by gene basis. From the curated subsystems we extract a set of freely available protein families (FIGfams). These FIGfams form the core component of our RAST automated annotation technology. Answering numerous requests for automatic Seed-Quality annotations for more or less complete bacterial and archaeal genomes, we have established the free RAST-Server (RAST=Rapid Annotation using Subsytems Technology). Using similar technology, we make the Metagenomics-RAST-Server freely available. We also provide a SEED-Viewer that allows read-only access to the latest curated data sets. We currently have 58 Archaea, 902 Bacteria, 562 Eukaryota, 1254 Plasmids and 1713 Viruses in our database. All tools and datasets that make up the SEED are in the public domain and can be downloaded at ftp://ftp.theseed.org

View all literature mentions

TreeView (tool)

RRID:SCR_013503

Software to graphically browse results of clustering and other analyses from Cluster.

View all literature mentions

Cluster (tool)

RRID:SCR_013505

Software R package. Methods for Cluster analysis. Performs variety of types of cluster analysis and other types of processing on large microarray datasets.

View all literature mentions

PhyML (tool)

RRID:SCR_014629

Web phylogeny server based on the maximum-likelihood principle.

View all literature mentions

TranslatorX (tool)

RRID:SCR_014733

Nucleotide sequence alignment and alignment cleaning based on amino acid information. Users can paste nt-sequences into the application and select the desired protein alignment method and the genetic code, and the option for alignment cleaning.

View all literature mentions

PAML (tool)

RRID:SCR_014932

Package of programs for phylogenetic analyses of DNA or protein sequences using maximum likelihood. PAML estimates parameters and tests hypotheses to study the evolutionary process from a phylogenetic tree.

View all literature mentions