Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

G-triplex structure and formation propensity.

Nucleic acids research | 2014

The occurrence of a G-triplex folding intermediate of thrombin binding aptamer (TBA) has been recently predicted by metadynamics calculations, and experimentally supported by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data collected on a 3' end TBA-truncated 11-mer oligonucleotide (11-mer-3'-t-TBA). Here we present the solution structure of 11-mer-3'-t-TBA in the presence of potassium ions. This structure is the first experimental example of a G-triplex folding, where a network of Hoogsteen-like hydrogen bonds stabilizes six guanines to form two G:G:G triad planes. The G-triplex folding of 11-mer-3'-t-TBA is stabilized by the potassium ion and destabilized by increasing the temperature. The superimposition of the experimental structure with that predicted by metadynamics shows a great similarity, with only significant differences involving two loops. These new structural data show that 11-mer-3'-t-TBA assumes a G-triplex DNA conformation as its stable form, reinforcing the idea that G-triplex folding intermediates may occur in vivo in human guanine-rich sequences. NMR and CD screening of eight different constructs obtained by removing from one to four bases at either the 3' and the 5' ends show that only the 11-mer-3'-t-TBA yields a relatively stable G-triplex.

Pubmed ID: 25378342 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: European Research Council, International
    Id: 247075

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (tool)

RRID:SCR_012820

Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions

Assisted Model Building with Energy Refinement (AMBER) (tool)

RRID:SCR_014230

Software package of molecular simulation programs. It is distributed into AmberTools15 and Amber14. AmberTools15 is a software package which can carry out complete molecular dynamics simulations with either explicit water or generalized Born solvent models. It is distributed in source code format and must be compiled in order to be used. Amber14 builds on AmberTools15 by adding the pmemd program, which provides better performance on multiple CPUs and dramatic speed improvements on GPUs compared to sander (molecular dynamics). GPU info, manuals, and tutorials are available on the website.

View all literature mentions