Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated.

PLoS neglected tropical diseases | 2014

Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms.

Pubmed ID: 24831516 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


UniProt (tool)

RRID:SCR_002380

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

View all literature mentions

DTU Center for Biological Sequence Analysis (tool)

RRID:SCR_003590

The Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

View all literature mentions

SMART (tool)

RRID:SCR_005026

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

View all literature mentions

Broad Institute (tool)

RRID:SCR_007073

Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.

View all literature mentions

MIPS FunCat (tool)

RRID:SCR_008709

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 19, 2019. The Functional Catalogue is an annotation scheme for the functional description of proteins of prokaryotic and eukaryotic origin. Taking into account the broad and highly diverse spectrum of known protein functions, the FunCat consists of 28 main functional categories (or branches) that cover general fields like cellular transport, metabolism and cellular communication/signal transduction. The main branches exhibit a hierarchical, tree like structure with up to six levels of increasing specificity. In total, the FunCat version 2.1 includes 1362 functional categories. This general concept was retained since the annotation of the Saccharomyces cerevisiae genome with only 4 revisions and later on also proved to be well suited for the annotation of genomes from different domains of life (Ruepp et al. 2004). The present and previous versions as well as a version mapping file of the FunCat and annotation data of our core projects can be downloaded via FTP. The MIPS Functional Catalogue Database provides a search tool to browse and search the Functional Categories including the FunCat Number, description, EC number, GO number or keywords associated with the categories. All FunCat annotated proteins and the amount of Co-annotated-FunCats can be retrieved starting with a specific category in a selected organism. A statistical survey of the functional distribution of a given set of genes/entries, e. g. a set of genes with up-regulated expression under a certain condition can be retrieved.

View all literature mentions

Spotfire (tool)

RRID:SCR_008858

The Spotfire Gene Ontology Advantage Application integrates GO annotations with gene expression analysis in Spotfire DecisionSite for Functional Genomics. Researchers can select a subset of genes in DecisionSite visualizations and display their distribution in the Gene Ontology hierarchy. Similarly, selection of any process, function or cellular location in the Gene Ontology hierarchy automatically marks the corresponding genes in DecisionSite visualizations. Platform: Windows compatible

View all literature mentions

Kyoto Encyclopedia of Genes and Genomes Expression Database (tool)

RRID:SCR_001120

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

View all literature mentions

SignalP (tool)

RRID:SCR_015644

Web application for prediction of the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions