Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions.

Molecular genetics and metabolism | 2014

The fibrillins and latent transforming growth factor binding proteins (LTBPs) form a superfamily of extracellular matrix (ECM) proteins characterized by the presence of a unique domain, the 8-cysteine transforming growth factor beta (TGFβ) binding domain. These proteins are involved in the structure of the extracellular matrix and controlling the bioavailability of TGFβ family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using the FANTOM5 CAGE database for human. While the protein and nucleotide sequences show considerable sequence similarity, the promoter regions were quite diverse. Most genes had a single predominant transcription start site region but LTBP1 and LTBP4 had two regions initiating different transcripts. Most of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different promoters for one gene were more similar to each other in expression than to promoters of the other family members. Notably expression of all 22 LTBP2 promoters was tightly correlated and quite distinct from all other family members. We located candidate enhancer regions likely to be involved in expression of the genes. Each gene was associated with a unique subset of transcription factors across multiple promoters although several motifs including MAZ, SP1, GTF2I and KLF4 showed overrepresentation across the gene family. FBN1 and FBN2, which had similar expression patterns, were regulated by different transcription factors. This study highlights the role of alternative transcription start sites in regulating the tissue specificity of closely related genes and suggests that this important class of extracellular matrix proteins is subject to subtle regulatory variations that explain the differential roles of members of this gene family.

Pubmed ID: 24703491 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/I024801/1
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BBS/E/D/20211552

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

BioGPS: The Gene Portal Hub (tool)

RRID:SCR_006433

An extensible and customizable gene annotation portal that emphasizes community extensibility and user customizability. It is a complete resource for learning about gene and protein function. Community extensibility reflects a belief that any BioGPS user should be able to add new content to BioGPS using the simple plugin interface, completely independently of the core developer team. User customizability recognizes that not all users are interested in the same set of gene annotation data, so the gene report layouts enable each user to define the information that is most relevant to them. Currently, BioGPS supports eight species: Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus), Fruitfly (Drosophila melanogaster), Nematode (Caenorhabditis elegans), Zebrafish (Danio rerio), Thale-cress (Arabidopsis thaliana), Frog (Xenopus tropicalis), and Pig (Sus scrofa). BioGPS presents data in an ortholog-centric format, which allows users to display mouse plugins next to human ones. Our data for defining orthologs comes from NCBI's HomoloGene database.

View all literature mentions

CAGE (tool)

RRID:SCR_007574

Expression profiling and promoter identification software tool for transcriptional network analysis and transcriptome characterization. DeepCAGE, the combination of next-generation sequencing with next generation expression profiling provides unsurpassed solutions for expression profiling and genome annotation. CAGE will be the experimental approach at need to link gene expression and control regions in the genome. With the availability of next-generation sequencing methods, DNAFORM now offers DeepCAGE services. DeepCAGE libraries are prepared for direct analysis by an Illumina/Solexa Sequencer. One sequencing run using one channel on an Illumina/Solexa Sequencer can yield in over 4,000,000 reads per sample. CAGE is based on our full-length cDNA library technology, where an adaptor is ligated to the 5''''-end of full-length cDNAs, which introduces a recognition site for a Class IIs restriction endonuclease adjacent to the 5''''-end of the cDNA. The Class IIs restriction endonuclease, here MmeI, allows for the cloning of short tags as derived from the 5''''-end of transcripts into concatemers for high-throughput sequencing. CAGE tags are further characterized by mapping to genomic sequences, which enables the identification of transcriptional start sites. As such CAGE can contribute to projects in Gene Discovery, Gene Expression, and Promoter Identification. After the genome sequencing projects have provided us with the genetic blueprints for many organisms, new questions have to be answered on how to correlate the observed genotypes with related phenotypes, and how to understand the regulation of genetic information in time and space. The dynamics of living systems and the functional behavior of cells in multicellular organisms has thus become the subject of the emerging field of system biology. Integration of experimental approaches and computer aided theories on a system level will be the fundamental principle to drive systems biology in order to understand the principles behind complex regulatory networks, which will be an ambitious goal requiring new approaches in life sciences. For ordering and additional information, please contact us under contact_at_dnaform.jp

View all literature mentions

SaOS-2 (tool)

RRID:CVCL_0548

Cell line SaOS-2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MG-63 (tool)

RRID:CVCL_0426

Cell line MG-63 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions