Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Evolution and classification of myosins, a paneukaryotic whole-genome approach.

Genome biology and evolution | 2014

Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family.

Pubmed ID: 24443438 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: European Research Council, International
    Id: 206883
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/G00885X/1
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/G00885X/2

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Hmmer (tool)

RRID:SCR_005305

Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

Geneious (tool)

RRID:SCR_010519

Software package for sequence alignment, assembly and analysis. Integrated and extendable desktop software platform for organization and analysis of sequence data. Bioinformatics software platform packed with molecular biology and sequence analysis tools.

View all literature mentions