Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A comparative analysis of trypanosomatid SNARE proteins.

Parasitology international | 2014

The Kinetoplastida are flagellated protozoa evolutionary distant and divergent from yeast and humans. Kinetoplastida include trypanosomatids, and a number of important pathogens. Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. inflict significant morbidity and mortality on humans and livestock as the etiological agents of human African trypanosomiasis, Chagas' disease and leishmaniasis respectively. For all of these organisms, intracellular trafficking is vital for maintenance of the host-pathogen interface, modulation/evasion of host immune system responses and nutrient uptake. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are critical components of the intracellular trafficking machinery in eukaryotes, mediating membrane fusion and contributing to organelle specificity. We asked how the SNARE complement evolved across the trypanosomatids. An in silico search of the predicted proteomes of T. b. brucei and T. cruzi was used to identify candidate SNARE sequences. Phylogenetic analysis, including comparisons with yeast and human SNAREs, allowed assignment of trypanosomatid SNAREs to the Q or R subclass, as well as identification of several SNAREs orthologous with those of opisthokonts. Only limited variation in number and identity of SNAREs was found, with Leishmania major having 27 and T. brucei 26, suggesting a stable SNARE complement post-speciation. Expression analysis of T. brucei SNAREs revealed significant differential expression between mammalian and insect infective forms, especially within R and Qb-SNARE subclasses, suggesting possible roles in adaptation to different environments. For trypanosome SNAREs with clear orthologs in opisthokonts, the subcellular localization of TbVAMP7C is endosomal while both TbSyn5 and TbSyn16B are at the Golgi complex, which suggests conservation of localization and possibly also function. Despite highly distinct life styles, the complement of trypanosomatid SNAREs is quite stable between the three pathogenic lineages, suggesting establishment in the last common ancestor of trypanosomes and Leishmania. Developmental changes to SNARE mRNA levels between blood steam and procyclic life stages suggest that trypanosomes modulate SNARE functions via expression. Finally, the locations of some conserved SNAREs have been retained across the eukaryotic lineage.

Pubmed ID: 24269876 RIS Download

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 082813

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Eukaryotic Pathogen Database Resources (tool)

RRID:SCR_004512

EuPathDB integrates numerous database resources and multiple data types. The phylum Apicomplexa comprises veterinary and medically important parasitic protozoa including human pathogenic species of genera Cryptosporidium, Plasmodium and Toxoplasma. ApiDB serves not only as database but unifies access to three major existing individual organism databases, PlasmoDB.org, ToxoDB.org and CryptoDB.org, and integrates these databases with data available from additional sources. Through ApiDB site, users may pose queries and search all available apicomplexan data and tools, or they may visit individual component organism databases. EuPathDB Bioinformatics Resource Center for Biodefense and Emerging/Re-emerging Infectious Diseases is a portal for accessing genomic-scale datasets associated with eukaryotic pathogens.

View all literature mentions

FigTree (tool)

RRID:SCR_008515

A graphical viewer of phylogenetic trees and a program for producing publication-ready figures. It is designed to display summarized and annotated trees produced by BEAST.

View all literature mentions

New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions

PROSITE (tool)

RRID:SCR_003457

Database of protein families and domains that is based on the observation that, while there is a huge number of different proteins, most of them can be grouped, on the basis of similarities in their sequences, into a limited number of families. Proteins or protein domains belonging to a particular family generally share functional attributes and are derived from a common ancestor. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. ScanProsite finds matches of your protein sequences to PROSITE signatures. PROSITE currently contains patterns and profiles specific for more than a thousand protein families or domains. Each of these signatures comes with documentation providing background information on the structure and function of these proteins. The database is available via FTP.

View all literature mentions

SMART (tool)

RRID:SCR_005026

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

View all literature mentions

Jalview (tool)

RRID:SCR_006459

A free program for multiple sequence alignment editing, visualisation and analysis that is available in two forms: a lightweight Java applet for use in web applications, and a powerful desktop application that employs web services for sequence alignment, secondary structure prediction and the retrieval of alignments, sequences, annotation and structures from public databases and any DAS 1.53 compliant sequence or annotation server. Use it to view and edit sequence alignments, analyse them with phylogenetic trees and principal components analysis (PCA) plots and explore molecular structures and annotation. Jalview has built in DNA, RNA and protein sequence and structure visualisation and analysis capabilities. It uses Jmol to view 3D structures, and VARNA to display RNA secondary structure.

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions

MrBayes (tool)

RRID:SCR_012067

THIS RESOURCE IS NO LONGER IN SERVICE.Documented on February 28,2023. Software program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.

View all literature mentions

PhyML (tool)

RRID:SCR_014629

Web phylogeny server based on the maximum-likelihood principle.

View all literature mentions