Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation.

PLoS biology | 2013

Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.

Pubmed ID: 24265597 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM076007
  • Agency: NIGMS NIH HHS, United States
    Id: GM076007
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM045744
  • Agency: NIGMS NIH HHS, United States
    Id: GM45744
  • Agency: NIGMS NIH HHS, United States
    Id: F32 GM103186
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM093182
  • Agency: NIGMS NIH HHS, United States
    Id: GM093182
  • Agency: NIGMS NIH HHS, United States
    Id: R37 GM045744

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RepeatMasker (tool)

RRID:SCR_012954

Software tool that screens DNA sequences for interspersed repeats and low complexity DNA sequences. The output of the program is a detailed annotation of the repeats that are present in the query sequence as well as a modified version of the query sequence in which all the annotated repeats have been masked (default: replaced by Ns). Currently over 56% of human genomic sequence is identified and masked by the program. Sequence comparisons in RepeatMasker are performed by one of several popular search engines including nhmmer, cross_match, ABBlast/WUBlast, RMBlast and Decypher. RepeatMasker makes use of curated libraries of repeats and currently supports Dfam ( profile HMM library ) and RepBase ( consensus sequence library ).

View all literature mentions

ChIP-seq (tool)

RRID:SCR_001237

Set of software modules for performing common ChIP-seq data analysis tasks across the whole genome, including positional correlation analysis, peak detection, and genome partitioning into signal-rich and signal-poor regions. The tools are designed to be simple, fast and highly modular. Each program carries out a well defined data processing procedure that can potentially fit into a pipeline framework. ChIP-Seq is also freely available on a Web interface.

View all literature mentions

FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions

eXpress (tool)

RRID:SCR_006873

THIS RESOURCE IS NO LONGER IN SERVICE. Documented January 29, 2018.
From website: "Note that the eXpress software is also no longer being developed. We recommend you use kallisto instead." Kallisto can be found at http://pachterlab.github.io/kallisto/.

Software for streaming quantification for high-throughput DNA/RNA sequencing.
Can be used in any application where abundances of target sequences need to be estimated from short reads sequenced from them.

View all literature mentions

Mercator (tool)

RRID:SCR_014493

A software package for quantification of histological sections. This software performs functions including: management and analysis of regions of interest, annotations, statistical analysis, and 3D visualization. These results are edited in an Excel-compatible spreadsheet.

View all literature mentions

RepeatModeler (tool)

RRID:SCR_015027

Sequence analysis software that performs repeat family identification and creates models for sequence data. RepeatModeler utilizes RepeatScout and RECON to identify repeat element boundaries and family relationships.

View all literature mentions