Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility.

The Journal of biological chemistry | 2014

The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.

Pubmed ID: 24214982 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 097907
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/G016186/1
  • Agency: Wellcome Trust, United Kingdom
    Id: WT097907MA
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/G016240/1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


iMosflm (tool)

RRID:SCR_014217

Software which processes diffraction data/images and produces an MTZ file of reflection indices with their intensities, standard deviations, and other parameters. The MTZ file is passed onto other programs of the CCP4 program suite for further data reduction. iMosflm processes data from CCD and pixel detectors. It is available for Windows, Mac OSX and Linux platforms. Tutorials are available at the website.

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Refmac (tool)

RRID:SCR_014225

A molecular refinement program with two main modes: REVIEW, which checks and updates the input model to establish that the geometric restraints can be properly set up, and REFINE mode, which is the standard mode and documented in keywords. In REVIEW users can: check model coordinates and write an extended output set of coordinates, find disulphide bonds and other covalent links, cis-peptides, output the sequence and REMARK records. In REFINEMENT mode users can carry out rigid body, tls, restrained or unrestrained refinement against Xray data, or idealisation of a macromolecular structure. Also in REFINEMENT mode, Refmac produces an MTZ output file containing weighted coefficients for SigmaA weighted mFo-DFcalc and 2mFo-DFcalc maps. The program is supported by CCP4.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions