Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A dominant mutation in FBXO38 causes distal spinal muscular atrophy with calf predominance.

American journal of human genetics | 2013

Spinal muscular atrophies (SMAs) are a heterogeneous group of inherited disorders characterized by degeneration of anterior horn cells and progressive muscle weakness. In two unrelated families affected by a distinct form of autosomal-dominant distal SMA initially manifesting with calf weakness, we identified by genetic linkage analysis and exome sequencing a heterozygous missense mutation, c.616T>C (p.Cys206Arg), in F-box protein 38 (FBXO38). FBXO38 is a known coactivator of the transcription factor Krüppel-like factor 7 (KLF7), which regulates genes required for neuronal axon outgrowth and repair. The p.Cys206Arg substitution did not alter the subcellular localization of FBXO38 but did impair KLF7-mediated transactivation of a KLF7-responsive promoter construct and endogenous KLF7 target genes in both heterologously expressing human embryonic kidney 293T cells and fibroblasts derived from individuals with the FBXO38 missense mutation. This transcriptional dysregulation was associated with an impairment of neurite outgrowth in primary motor neurons. Together, these results suggest that a transcriptional regulatory pathway that has a well-established role in axonal development could also be critical for neuronal maintenance and highlight the importance of FBXO38 and KLF7 activity in motor neurons.

Pubmed ID: 24207122 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: ZO1 AG000958-10
  • Agency: NINDS NIH HHS, United States
    Id: K08 NS075094
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000448
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS062869
  • Agency: NCATS NIH HHS, United States
    Id: KL2 TR000450
  • Agency: Wellcome Trust, United Kingdom
  • Agency: Medical Research Council, United Kingdom
    Id: MR/K000608/1
  • Agency: Medical Research Council, United Kingdom
    Id: G0802760
  • Agency: Medical Research Council, United Kingdom
    Id: G1001253
  • Agency: NINDS NIH HHS, United States
    Id: U54 NS065712
  • Agency: Medical Research Council, United Kingdom
    Id: G108/638
  • Agency: Intramural NIH HHS, United States
    Id: Z01 AG000958
  • Agency: NINDS NIH HHS, United States
    Id: K08-NS-075094
  • Agency: Medical Research Council, United Kingdom
    Id: MR/J004758/1
  • Agency: NINDS NIH HHS, United States
    Id: U54NS065712

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RefSeq (tool)

RRID:SCR_003496

Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.

View all literature mentions

OMIM (tool)

RRID:SCR_006437

Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

NHLBI Exome Sequencing Project (ESP) (tool)

RRID:SCR_012761

The goal of the project is to discover novel genes and mechanisms contributing to heart, lung and blood disorders by pioneering the application of next-generation sequencing of the protein coding regions of the human genome across diverse, richly-phenotyped populations and to share these datasets and findings with the scientific community to extend and enrich the diagnosis, management and treatment of heart, lung and blood disorders. The groups participating and collaborating in the NHLBI GO ESP include: Seattle GO - University of Washington, Seattle, WA Broad GO - Broad Institute of MIT and Harvard, Cambridge, MA WHISP GO - Ohio State University Medical Center, Columbus, OH Lung GO - University of Washington, Seattle, WA WashU GO - Washington University, St. Louis, MO Heart GO - University of Virginia Health System, Charlottesville, VA ChargeS GO - University of Texas Health Sciences Center at Houston

View all literature mentions