Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The neuron identity problem: form meets function.

Neuron | 2013

A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies.

Pubmed ID: 24183013 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01MH095147
  • Agency: NIMH NIH HHS, United States
    Id: 5 P50 MH090963 P2
  • Agency: PHS HHS, United States
    Id: HSSN271200723701C
  • Agency: NINDS NIH HHS, United States
    Id: R01NS081297
  • Agency: NINDS NIH HHS, United States
    Id: P0NS074972
  • Agency: NIDA NIH HHS, United States
    Id: P30 DA035756
  • Agency: NIDA NIH HHS, United States
    Id: RC2 DA028968
  • Agency: NIMH NIH HHS, United States
    Id: R01MH071679
  • Agency: NIMH NIH HHS, United States
    Id: P50 MH090963
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NIDA NIH HHS, United States
    Id: P30 DA035756-01

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Expression Nervous System Atlas (tool)

RRID:SCR_002721

Gene expression data and maps of mouse central nervous system. Gene expression atlas of developing adult central nervous system in mouse, using in situ hybridization and transgenic mouse techniques. Collection of pictorial gene expression maps of brain and spinal cord of mouse. Provides tools to catalog, map, and electrophysiologically record individual cells. Application of Cre recombinase technologies allows for cell-specific gene manipulation. Transgenic mice created by this project are available to scientific community.

View all literature mentions

Mouse Genome Informatics (MGI) (tool)

RRID:SCR_006460

International database for laboratory mouse. Data offered by The Jackson Laboratory includes information on integrated genetic, genomic, and biological data. MGI creates and maintains integrated representation of mouse genetic, genomic, expression, and phenotype data and develops reference data set and consensus data views, synthesizes comparative genomic data between mouse and other mammals, maintains set of links and collaborations with other bioinformatics resources, develops and supports analysis and data submission tools, and provides technical support for database users. Projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, and MouseCyc Project at MGI.

View all literature mentions

Allen Institute for Brain Science (tool)

RRID:SCR_006491

Seattle based independent, nonprofit medical research organization dedicated to accelerating the understanding of how human brain works. Provides free data and tools to researchers and educators and variety of unique online public resources for exploring the nervous system. Integrates gene expression data and neuroanatomy, along with data search and viewing tools, these resources are openly accessible via the Allen Brain Atlas data portal. Provides Allen Mouse Brain, Allen Spinal Cord Atlas, Allen Developing Mouse Brain Atlas, Allen Human Brain Atlas,Allen Mouse Brain Connectivity Atlas, Allen Cell Type Database, The Ivy Glioblastoma Atlas Project (Ivy GAP), The BrainSpan Atlas of the Developing Human Brain.

View all literature mentions