Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

High expression of APAF-1 elevates erythroid apoptosis in iron overload myelodysplastic syndrome.

Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine | 2014

Apoptotic protease-activating factor 1 (APAF-1) is a central component of the intrinsic pathway of apoptosis. Our study aims at searching the role of APAF-1 in iron overload myelodysplastic syndrome (MDS). Erythroid apoptosis rate, mRNA expression levels of APAF-1, and caspase-9 activity were determined by flow cytometry, quantitative real-time PCR, and colorimetric assay in MDS patients, respectively. In addition, K562 and MDS-L cell lines were incubated with different concentrations of ferric ammonium citrate (FAC) or ferric ammonium citrate + desferrioxamine (FAC + DFO) in vitro to observe the alteration in erythrocyte apoptosis rate, APAF-1 mRNA, and protein expression levels. Moreover, as control, erythroid apoptosis rate and APAF-1 mRNA expression were detected after silencing APAF-1 expression by endoribonuclease-prepared small interfering RNAs (esiRNAs) in K562 and MDS-L cell lines. Both erythroid apoptosis rate and APAF-1 mRNA expression of the iron overload (IO) group were significantly higher than those of the non-IO group (P < 0.001 and P < 0.001). There is a significant difference of caspase-9 activity between the IO group and the non-IO group (P < 0.001). Erythroid apoptosis rate and APAF-1 mRNA expression of K562 and MDS-L cell lines significantly elevated after FAC incubation in different concentrations (P < 0.001 and P < 0.001 for K562; P < 0.001 and P < 0.001 for MDS-L), while erythroid apoptosis rate and APAF-1 mRNA expression in the FAC + DFO group declined (P < 0.001 and P < 0.001 for K562; P < 0.001 and P < 0.001 for MDS-L). After silencing of APAF-1 expression with specific esiRNAs, erythroid apoptosis rate and APAF-1 mRNA expression of K562 and MDS-L cell lines markedly decreased (P < 0.001 and P < 0.001 for K562; P < 0.001 and P < 0.001 for MDS-L). APAF-1 plays an important role in iron-induced erythroid apoptosis increase in MDS.

Pubmed ID: 24142530 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


K-562 (tool)

RRID:CVCL_0004

Cell line K-562 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions