Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

T-cell intracellular antigen (TIA)-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy.

PloS one | 2013

Mice lacking either T-cell intracellular antigen 1 (TIA1) or TIA1 related/like protein (TIAR/TIAL1) show high rates of embryonic lethality, suggesting a relevant role for these proteins during embryonic development. However, intrinsic molecular and cellular consequences of either TIA1 or TIAR deficiency remain poorly defined. By using genome-wide expression profiling approach, we demonstrate that either TIA1 or TIAR inactivation broadly alter normal development-associated signalling pathways in murine embryonic fibroblasts (MEF). Indeed, these analyses highlighted alterations of cytokine-cytokine and ECM-receptor interactions and Wnt, MAPK, TGF-beta dependent signalling pathways. Consistent with these results, TIA1 and TIAR knockout (KO) MEF show reduced rates of cell proliferation, cell cycle progression delay and increased cell size. Furthermore, TIA-proteins deficiency also caused metabolic deficiencies, increased ROS levels and DNA damage, promoting a gentle rise of cell death. Concomitantly, high rates of autophagy were detected in both TIA1 and TIAR KO MEF with induction of the formation of autophagosomes, as evidenced by the up-regulation of the LC3B protein, and autolysosomes, measured by colocalization of LC3B and LAMP1, as a survival mechanism attempt. Taken together, these observations support that TIA proteins orchestrate a transcriptome programme to activate specific developmental decisions. This program is likely to contribute to mouse physiology starting at early stages of the embryonic development. TIA1/TIAR might function as cell sensors to maintain homeostasis and promote adaptation/survival responses to developmental stress.

Pubmed ID: 24086455 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions

eXpress (tool)

RRID:SCR_006873

THIS RESOURCE IS NO LONGER IN SERVICE. Documented January 29, 2018.
From website: "Note that the eXpress software is also no longer being developed. We recommend you use kallisto instead." Kallisto can be found at http://pachterlab.github.io/kallisto/.

Software for streaming quantification for high-throughput DNA/RNA sequencing.
Can be used in any application where abundances of target sequences need to be estimated from short reads sequenced from them.

View all literature mentions