Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

PloS one | 2013

Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

Pubmed ID: 24073228 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM068947
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM080219
  • Agency: NIGMS NIH HHS, United States
    Id: GM068947

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions

National Institute of General Medical Sciences (tool)

RRID:SCR_012887

NIGMS supports basic biomedical research that is not targeted to specific diseases. NIGMS funds studies on genes, proteins, and cells, as well as on fundamental processes like communication within and between cells, how our bodies use energy, and how we respond to medicines. The results of this research increase our understanding of life and lay the foundation for advances in disease diagnosis, treatment, and prevention. NIGMS also supports research training programs that produce the next generation of biomedical scientists, and it has special programs to encourage underrepresented minorities to pursue biomedical research careers. The National Institute of General Medical Sciences (NIGMS) primarily supports research that lays the foundation for advances in disease diagnosis, treatment, and prevention. The Institute's research training programs help provide the next generation of scientists. Each year, NIGMS-supported scientists make many advances in understanding fundamental life processes. In the course of answering basic research questions, these investigators increase our knowledge about the mechanisms and pathways involved in certain diseases. Institute grantees also develop important new tools and techniques, some of which have medical applications. In recognition of the significance of their work, a number of NIGMS grantees have received the Nobel Prize and other high scientific honors. At any given time, NIGMS supports approximately 4,700 research grants—approximately 11 percent of the grants funded by NIH as a whole. NIGMS also supports approximately 26 percent of the trainees who receive assistance from NIH. NIGMS also supports approximately 25% of the trainees who receive assistance from NIH. The Institute places great emphasis on supporting investigator-initiated research grants. It funds a limited number of research center grants in selected fields, including structural genomics, trauma and burn research, and systems biology. In addition, NIGMS supports several important scientific resources, including the NIGMS Human Genetic Cell Repository and the Protein Data Bank.

View all literature mentions

TreeView (tool)

RRID:SCR_013503

Software to graphically browse results of clustering and other analyses from Cluster.

View all literature mentions