Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SCD1 Expression is dispensable for hepatocarcinogenesis induced by AKT and Ras oncogenes in mice.

PloS one | 2013

Increased de novo lipogenesis is one of the major metabolic events in cancer. In human hepatocellular carcinoma (HCC), de novo lipogenesis has been found to be increased and associated with the activation of AKT/mTOR signaling. In mice, overexpression of an activated form of AKT results in increased lipogenesis and hepatic steatosis, ultimately leading to liver tumor development. Hepatocarcinogenesis is dramatically accelerated when AKT is co-expressed with an oncogenic form of N-Ras. SCD1, the major isoform of stearoyl-CoA desaturases, catalyzing the conversion of saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA), is a key enzyme involved in de novo lipogenesis. While many studies demonstrated the requirement of SCD1 for tumor cell growth in vitro, whether SCD1 is necessary for tumor development in vivo has not been previously investigated. Here, we show that genetic ablation of SCD1 neither inhibits lipogenesis and hepatic steatosis in AKT-overexpressing mice nor affects liver tumor development in mice co-expressing AKT and Ras oncogenes. Molecular analysis showed that SCD2 was strongly upregulated in liver tumors from AKT/Ras injected SCD1(-/-) mice. Noticeably, concomitant silencing of SCD1 and SCD2 genes was highly detrimental for the growth of AKT/Ras cells in vitro. Altogether, our study provides the evidence, for the first time, that SCD1 expression is dispensable for AKT/mTOR-dependent hepatic steatosis and AKT/Ras-induced hepatocarcinogenesis in mice. Complete inhibition of stearoyl-CoA desaturase activity may be required to efficiently suppress liver tumor development.

Pubmed ID: 24069385 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R03CA165122
  • Agency: NCI NIH HHS, United States
    Id: R01CA136606
  • Agency: Medical Research Council, United Kingdom
    Id: MC_UP_1202/4
  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK026743
  • Agency: NIDDK NIH HHS, United States
    Id: U24 DK059637
  • Agency: NCI NIH HHS, United States
    Id: R03 CA165122
  • Agency: NCI NIH HHS, United States
    Id: R01 CA136606

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Mouse Metabolic Phenotyping Centers (tool)

RRID:SCR_008997

The mission is to advance medical and biological research by providing the scientific community with standardized, high quality metabolic and physiologic phenotyping services for mouse models of diabetes, diabetic complications, obesity and related disorders.

View all literature mentions

Applied Biosystems (tool)

RRID:SCR_005039

An Antibody supplier

View all literature mentions

FVB/NJ (tool)

RRID:IMSR_JAX:001800

Mus musculus with name FVB/NJ from IMSR.

View all literature mentions