Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Targeting gastrin-releasing peptide suppresses neuroblastoma progression via upregulation of PTEN signaling.

PloS one | 2013

We have previously demonstrated the role of gastrin-releasing peptide (GRP) as an autocrine growth factor for neuroblastoma. Here, we report that GRP silencing regulates cell signaling involved in the invasion-metastasis cascade. Using a doxycycline inducible system, we demonstrate that GRP silencing decreased anchorage-independent growth, inhibited migration and neuroblastoma cell-mediated angiogenesis in vitro, and suppressed metastasis in vivo. Targeted inhibition of GRP decreased the mRNA levels of oncogenes responsible for neuroblastoma progression. We also identified PTEN/AKT signaling as a key mediator of the tumorigenic properties of GRP in neuroblastoma cells. Interestingly, PTEN overexpression decreased GRP-mediated migration and angiogenesis; a novel role for this, otherwise, understated tumor suppressor in neuroblastoma. Furthermore, activation of AKT (pAKT) positively correlated with neuroblastoma progression in an in vivo tumor-metastasis model. PTEN expression was slightly decreased in metastatic lesions. A similar phenomenon was observed in human neuroblastoma sections, where, early-stage localized tumors had a higher PTEN expression relative to pAKT; however, an inverse expression pattern was observed in liver lesions. Taken together, our results argue for a dual purpose of targeting GRP in neuroblastoma--1) decreasing expression of critical oncogenes involved in tumor progression, and 2) enhancing activation of tumor suppressor genes to treat aggressive, advanced-stage disease.

Pubmed ID: 24039782 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: T32 CA106183
  • Agency: NCI NIH HHS, United States
    Id: P30 CA68485
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK61470
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK061470
  • Agency: NCI NIH HHS, United States
    Id: P30 CA068485

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Primer-BLAST (tool)

RRID:SCR_003095

A tool to design target-specific primers for polymerase chain reaction (PCR). It uses Primer3 to design PCR primers and then uses BLAST and global alignment algorithm to screen primers against user-selected database in order to avoid primer pairs (all combinations including forward-reverse primer pair, forward-forward as well as reverse-reverse pairs) that can cause non-specific amplifications.

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

SH-SY5Y (tool)

RRID:CVCL_0019

Cell line SH-SY5Y is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293-FT (tool)

RRID:CVCL_6911

Cell line HEK293-FT is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Crl:NU(NCr)-Foxn1nu (tool)

RRID:IMSR_CRL:490

Mus musculus with name Crl:NU(NCr)-Foxn1nu from IMSR.

View all literature mentions