Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer.

PloS one | 2013

B cell-activating factor (BAFF) is a cytokine belonging to the tumor necrosis factor (TNF) superfamily. It has been reported that BAFF is elevated in patients with autoimmune pancreatitis and contributes to the malignant potential of blood cancers and solid tumors. In this study, clinical evidence of increased BAFF levels in patients with pancreatic ductal adenocarcinoma (PDAC) was obtained, and the roles and mechanisms of BAFF in PDAC were clarified in human tissues of PDAC and from in vitro data of PDAC cell lines. Serum levels of BAFF in patients with PDAC were significantly higher than in healthy subjects (p = 0.0121). Patients with UICC stage IV PDAC (T1-4, N0-1, M1) had significantly higher levels of serum BAFF compared to patients with PDAC (p = 0.0182). BAFF was remarkably expressed in infiltrating B lymphocytes surrounding pancreatic cancer in human pancreatic tissues, suggesting that BAFF may play a role in progression of pancreatic cancer. PDAC cell lines were cultured with human recombinant BAFF, and morphology and gene expression were analyzed; pancreatic cancer cells changed to a fibroblast-like morphology, and showed altered gene expression of E-cadherin, vimentin and Snail. These BAFF-induced changes reflect enhanced cell motility and invasion. BAFF-R-overexpressing cell clones confirmed the association between these BAFF-induced changes and epithelial-mesenchymal transition (EMT)-related genes. BAFF was elevated in patients with metastatic advanced PDAC and induced alterations in PDAC cells via regulation of EMT-related genes. Elucidation of the precise role and mechanism of control of BAFF may lead to new therapeutic approaches with the aim of improving pancreatic cancer survival.

Pubmed ID: 23940742 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Ramos (tool)

RRID:CVCL_0597

Cell line Ramos is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

PANC-1 (tool)

RRID:CVCL_0480

Cell line PANC-1 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MIA PaCa-2 (tool)

RRID:CVCL_0428

Cell line MIA PaCa-2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions