Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

PloS one | 2013

The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

Pubmed ID: 23894613 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: G0800310
  • Agency: Medical Research Council, United Kingdom
    Id: G0800339

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ArrayExpress (tool)

RRID:SCR_002964

International functional genomics data collection generated from microarray or next-generation sequencing (NGS) platforms. Repository of functional genomics data supporting publications. Provides genes expression data for reuse to the research community where they can be queried and downloaded. Integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Contains a subset of curated and re-annotated Archive data which can be queried for individual gene expression under different biological conditions across experiments. Data collected to MIAME and MINSEQE standards. Data are submitted by users or are imported directly from the NCBI Gene Expression Omnibus.

View all literature mentions

MRC Mammalian Genetics Unit (tool)

RRID:SCR_005378

It is now widely known that animals share many genes with humans and can suffer from the same diseases, for example diabetes or deafness. Investigating these diseases in animals can provide vital leads to understanding both their causes and ways to treat them in humans. This approach to medical research lies at the heart of work at the MRC Mammalian Genetics Unit (MGU) at Harwell in Oxfordshire. In 1995 the MRC Radiobiology Unit was reconstituted to form two new units, the Radiation and Genome Stability Unit and the MGU. These opened in January 1996, together with the UK Mouse Genome Centre which is now part of MGU, making MRC Harwell a unique campus for multi-disciplinary genetics research. Since MGU's Director Steve Brown took the reins in 1996, the unit has dramatically expanded its scientific scope and increased its personnel from 40 to over 100. It now has 13 research programs encompassing molecular genetics, genomics, genetic manipulation and data analysis at all levels, from single genes to the whole genome. With a combination of cutting-edge facilities and expertise unrivaled in Europe, MGU Harwell has become firmly established as one of the world's leading academic centres for mouse genetics.

View all literature mentions

modENCODE (tool)

RRID:SCR_006206

A comprehensive encyclopedia of genomic functional elements in the model organisms C. elegans and D. melanogaster. modENCODE is run as a Research Network and the consortium is formed by 11 primary projects, divided between worm and fly, spanning the domains of gene structure, mRNA and ncRNA expression profiling, transcription factor binding sites, histone modifications and replacement, chromatin structure, DNA replication initiation and timing, and copy number variation. The raw and interpreted data from this project is vetted by a data coordinating center (DCC) to ensure consistency and completeness. The entire modENCODE data corpus is now available on the Amazon Web Services EC2 cloud. What this means is that virtual machines and virtual compute clusters that you run within the EC2 cloud can mount the modENCODE data set in whole or in part. Your software can run analyses against the data files directly without experiencing the long waits and logistics associated with copying the datasets over to your local hardware. You may also view the data using GBrowse, Dataset Search, or download the data via FTP, as well as download pre-release datasets.

View all literature mentions