Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Antiprotozoal activity of bicyclic diamines with a N-methylpiperazinyl group at the bridgehead atom.

Bioorganic & medicinal chemistry | 2013

ω-Aminoacyl and -alkyl derivatives of 4-(4-methylpiperazin-1-yl)bicyclo[2.2.2]octan-2-amines and of 5-(4-methylpiperazin-1-yl)-2-azabicyclo[3.2.2]nonanes were prepared and their activities were examined in vitro against the multiresistant K1 strain of Plasmodium falciparum and against Trypanosoma brucei rhodesiense (STIB 900). Some of the newly synthesized compounds showed very promising antiprotozoal activity and selectivity. A few of the alkylamino-2-azabicyclo[3.2.2]nonanes exhibited high antiplasmodial activity, whereas a single bicyclo[2.2.2]octane derivative was the most potent antitrypanosomal compound. The results of the newly synthesized compounds were compared with the activities of already synthesized compounds and of drugs in use. Structure-activity relationships were discussed.

Pubmed ID: 23880082 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ChemAxon (tool)

RRID:SCR_004111

Commercial organization that provides cheminformatics software platforms, applications and services to optimize the value of chemistry information in life science and other R&D. This software enables structure visualization and management, property predictions and calculations, virtual synthesis, screening, clustering and drug design.

View all literature mentions