Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A semi-supervised method for drug-target interaction prediction with consistency in networks.

PloS one | 2013

Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample. Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which indicates the usefulness of our method. Finally, a comprehensive prediction of drug-target interactions enables us to suggest many new potential drug-target interactions for further studies.

Pubmed ID: 23667553 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


U.S. Food and Drug Administration (tool)

RRID:SCR_012945

An agency of the United States Department of Health and Human Services, one of the United States federal executive departments that is responsible for protecting and promoting public health through the regulation and supervision of food safety, tobacco products, dietary supplements, prescription and over-the-counter pharmaceutical drugs (medications), vaccines, biopharmaceuticals, blood transfusions, medical devices, electromagnetic radiation emitting devices (ERED), cosmetics and veterinary products. The FDA also enforces other laws, notably Section 361 of the Public Health Service Act and associated regulations, many of which are not directly related to food or drugs. These include sanitation requirements on interstate travel and control of disease on products ranging from certain household pets to sperm donation for assisted reproduction. (Wikipedia)

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

ChEMBL (tool)

RRID:SCR_014042

Collection of bioactive drug-like small molecules that contains 2D structures, calculated properties and abstracted bioactivities. Used for drug discovery and chemical biology research. Clinical progress of new compounds is continuously integrated into the database.

View all literature mentions