2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle.

Molecular biology of the cell | 2013

F-BAR proteins are membrane-associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F-BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N-terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled-coil region in the N-terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F-BAR domain. In contrast, the C-terminal half of Hof1 interacts with Myo1, the sole myosin-II heavy chain in budding yeast, and localizes to the bud neck in a Myo1-dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C-terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.

Pubmed ID: 23468521 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM087365
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM059216
  • Agency: NIGMS NIH HHS, United States
    Id: GM87365
  • Agency: NCI NIH HHS, United States
    Id: P30 CA016520
  • Agency: NIGMS NIH HHS, United States
    Id: GM59216

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Image Pro Plus (tool)

RRID:SCR_007369

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 18,2023. Software package to capture, process, measure, analyze and share images and data.

View all literature mentions

MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions