2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG.

mAbs | 2013

Antibody engineering is increasingly being used to influence the properties of monoclonal antibodies to improve their biotherapeutic potential. One important aspect of this is the modulation of glycosylation as a strategy to improve efficacy. Here, we describe mutations of Y407 in the CH3 domain of IgG1 and IgG4 that significantly increase sialylation, galactosylation, and branching of the N-linked glycans in the CH2 domain. These mutations also promote the formation of monomeric assemblies (one heavy-light chain pair). Hydrogen-deuterium exchange mass spectrometry was used to probe conformational changes in IgG1-Y407E, revealing, as expected, a more exposed CH3-CH3 dimerization interface. Additionally, allosteric structural effects in the CH2 domain and in the CH2-CH3 interface were identified, providing a possible explanation for the dramatic change in glycosylation. Thus, the mutation of Y407 in the CH3 domain remarkably affects both antibody conformation and glycosylation, which not only alters our understanding of antibody structure, but also reveals possibilities for obtaining recombinant IgG with glycosylation tailored for clinical applications.

Pubmed ID: 23406897 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HEK293-F (tool)

RRID:CVCL_6642

Cell line HEK293-F is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions