Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS.

PLoS pathogens | 2013

The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.

Pubmed ID: 23326233 RIS Download

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: P20 RR020171
  • Agency: NCRR NIH HHS, United States
    Id: 2P20 RR020171

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PyMOL (tool)

RRID:SCR_000305

A user-sponsored molecular visualization software system on an open-source foundation. The software has the capabilities to view, render, animate, export, present and develop three dimensional molecular structures.

View all literature mentions

DTU Center for Biological Sequence Analysis (tool)

RRID:SCR_003590

The Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

View all literature mentions

NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions

UCL Bioinformatics Group (tool)

RRID:SCR_010248

Group headed by Professor David Jones, and was originally founded as the Joint Research Council funded Bioinformatics Unit within the Department of Computer Science at University College London. Supports the following tools: Protein Structure Prediction Threading (THREADER) Ab initio folding simulations Secondary structure prediction (PSIPRED) Protein disorder prediction (DISOPRED) Protein domain prediction (DomPred) Database of protein disorder (DisoDB) Protein Sequence Analysis Protein function prediction (ffpred) Metsite: Metal binding residue prediction HSPred : Protein-protein interaction characterisation Amino acid substitution matrices Hidden Markov Models (collaboration with N. Goldman, Cambridge, & J. Thorne, NCSU) Genome Analysis Genomic fold recognition (GenTHREADER) Genome annotation using software agents Protein Structure Classification CATH (collaboration with J. Thornton & C. Orengo, UCL Biochemistry) Transmembrane Protein Modelling MEMSAT & MEMSATSVM Folding In Lipid Membranes (FILM) MEMPACK Biological Applications of Data-mining and Machine Learning Techniques Information extraction for biological research (BioRat) Microarray Analysis Data integration for microarray analysis Data visualization Systems Biology Systems biology applied to stem cells Legacy Services (to be retired shortly) Comparison of structure classifications (CATH/SCOP/FSSP) Genomic Threading Database (GTD)

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Refmac (tool)

RRID:SCR_014225

A molecular refinement program with two main modes: REVIEW, which checks and updates the input model to establish that the geometric restraints can be properly set up, and REFINE mode, which is the standard mode and documented in keywords. In REVIEW users can: check model coordinates and write an extended output set of coordinates, find disulphide bonds and other covalent links, cis-peptides, output the sequence and REMARK records. In REFINEMENT mode users can carry out rigid body, tls, restrained or unrestrained refinement against Xray data, or idealisation of a macromolecular structure. Also in REFINEMENT mode, Refmac produces an MTZ output file containing weighted coefficients for SigmaA weighted mFo-DFcalc and 2mFo-DFcalc maps. The program is supported by CCP4.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions

PhyML (tool)

RRID:SCR_014629

Web phylogeny server based on the maximum-likelihood principle.

View all literature mentions

SeaView (tool)

RRID:SCR_015059

Graphical user interface for multiple sequence alignment and molecular phylogeny. SeaView also generates phylogenetic trees.

View all literature mentions

Gblocks (tool)

RRID:SCR_015945

Software that eliminates poorly aligned positions and divergent regions of a DNA or protein alignment so that it becomes more suitable for phylogenetic analysis.

View all literature mentions