Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Gene expression patterns specific to the regenerating limb of the Mexican axolotl.

Biology open | 2012

Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1) a flank wound on the side of the animal that will not regenerate a limb, 2) a denervated limb that will not regenerate a limb, and 3) an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

Pubmed ID: 23213371 RIS Download

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: R24 OD010435
  • Agency: NCRR NIH HHS, United States
    Id: R24 RR016344
  • Agency: NINDS NIH HHS, United States
    Id: RC2 NS069480

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PANTHER (tool)

RRID:SCR_004869

System that classifies genes by their functions, using published scientific experimental evidence and evolutionary relationships to predict function even in absence of direct experimental evidence. Orthologs view is curated orthology relationships between genes for human, mouse, rat, fish, worm, and fly.

View all literature mentions

Sal-Site (tool)

RRID:SCR_002850

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

View all literature mentions

Ambystoma Genetic Stock Center (biomaterial supply resource)

RRID:SCR_006372

Maintains breeding colony of Mexican axolotls (Ambystoma mexicanum) that distributes axolotl embryos, larvae, and adults to laboratories and classrooms throughout the United States and abroad. Their mission is to serve biology research programs and educators by providing experimental material and expertise and by encouraging and facilitating the exchange of information and ideas.

View all literature mentions