Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The neuroendocrine protein 7B2 is intrinsically disordered.

Biochemistry | 2012

The small neuroendocrine protein 7B2 has been shown to be required for the productive maturation of proprotein convertase 2 (proPC2) to an active enzyme form; this action is accomplished via its ability to block aggregation of proPC2 into nonactivatable forms. Recent data show that 7B2 can also act as a postfolding chaperone to block the aggregation of a number of other proteins, for example, α-synuclein. To gain insight into the mechanism of action of 7B2 in blocking protein aggregation, we performed structural studies of this protein using gel filtration chromatography, intrinsic tryptophan fluorescence, 1-anilino-8-naphthalenesulfonate (ANS) binding, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. Gel filtration studies indicated that 7B2 exists as an extended monomer, eluting at a molecular mass higher than that expected for a globular protein of similar size. However, chemical cross-linking showed that 7B2 exhibits concentration-dependent oligomerization. CD experiments showed that both full-length 27 kDa 7B2 and the C-terminally truncated 21 kDa form lack appreciable secondary structure, although the longer protein exhibited more structural content than the latter, as demonstrated by intrinsic and ANS fluorescence studies. NMR spectra confirmed the lack of structure in native 7B2, but a disorder-to-order transition was observed upon incubation with one of its client proteins, α-synuclein. We conclude that 7B2 is a natively disordered protein whose function as an antiaggregant chaperone is likely facilitated by its lack of appreciable secondary structure and tendency to form oligomers.

Pubmed ID: 22947085 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK049703
  • Agency: NIDDK NIH HHS, United States
    Id: DK49703

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


UN-SCAN-IT Graph Digitizer Software (tool)

RRID:SCR_013725

Digitizer software which can convert graph images to useful (x,y) data by turning a scanner into an automatic graph digitizer. UN‑SCAN‑IT works with most image formats (TIFF, JPG, BMP, GIF, etc.) from any scanner, digital camera, or other image source to digitize plots, instrumental output, published graphs, etc. Its features include: automatically digitizing strip chart and xy recorder output, digitizing graphs that are on different scales to compare results, comparing data with published graphs of other investigators, digitizing old plots and charts for comparison with new data, and re‑scaling and appending existing printed graphs.

View all literature mentions