Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Proteomic analyses of transgenic LQT1 and LQT2 rabbit hearts elucidate an increase in expression and activity of energy producing enzymes.

Journal of proteomics | 2012

Various biochemical and genomic mechanisms are considered to be a hallmark of metabolic remodeling in the stressed heart, including the hypertrophied and failing heart. In this study, we used quantitative proteomic 2-D Fluorescence Difference In-Gel Electrophoresis (2-D DIGE) in conjunction with mass spectrometry to demonstrate differential protein expression in the hearts of transgenic rabbit models of Long QT Syndrome 1 (LQT1) and Long QT Syndrome 2 (LQT2) as compared to littermate controls (LMC). The results of our proteomic analysis revealed upregulation of key metabolic enzymes involved in all pathways associated with ATP generation, including creatine kinase in both LQT1 and LQT2 rabbit hearts. Additionally, the expression of lamin-A protein was increased in both LQT1 and LQT2 rabbit hearts as was the expression of mitochondrial aldehyde dehydrogenase and desmoplakin in LQT1 and LQT 2 rabbit hearts, respectively. Results of the proteomic analysis also demonstrated down regulation in the expression of protein disulfide-isomerase A3 precuorsor and dynamin-like 120 kDa protein (mitochondrial) in LQT1, and of alpha-actinin 2 in LQT2 rabbit hearts. Up regulation of the expression of the enzymes associated with ATP generation was substantiated by the results of selective enzyme assays in LQT1 and LQT2 hearts, as compared to LMC, which revealed increases in the activities of glycogen phosphorylase (+50%, +65%, respectively), lactate dehydrogenase (+25%, +25%) pyruvate dehydrogenase (+31%, +22%), and succinate dehydrogenase (+32%, +60%). The activity of cytochrome c-oxidase, a marker for the mitochondrial function was also found to be significantly elevated (+80%) in LQT1 rabbit hearts as compared with LMC. Western blot analysis in LQT1 and LQT2 hearts compared to LMC revealed an increase in the expression of very-long chain-specific acyl-CoA dehydrogenase (+35%, +33%), a rate-limiting enzymes in β-oxidation of fatty acids. Collectively, our results demonstrate similar increases in the expression and activities of key ATP-generating enzymes in LQT1 and LQT2 rabbit hearts, suggesting an increased demand, and in turn, increased energy supply across the entire metabolic pathway by virtue of the upregulation of enzymes involved in energy generation.

Pubmed ID: 22796357 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: 1S10RR020923
  • Agency: NHLBI NIH HHS, United States
    Id: R01-HL-046005-19
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL093205
  • Agency: NCRR NIH HHS, United States
    Id: S10 RR020923
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL046005
  • Agency: NHLBI NIH HHS, United States
    Id: R01-HL-093205-03

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DeCyder 2D (tool)

RRID:SCR_014592

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 24, 2016. A software which is used with gel electrophoresis analysis and is used with the Ettan DIGE system. This system allows the option of reference to the internal standard for each spot, which ultimately eliminates gel-to-gel variation, and gives quantitation. This gel comparison method introduces nearly zero statistical error.

View all literature mentions