Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome.

Neurobiology of disease | 2012

Rett syndrome is an X chromosome-linked neurodevelopmental disorder associated with cognitive impairment, motor dysfunction and breathing irregularities causing intermittent hypoxia. Evidence for impaired mitochondrial function is also accumulating. A subunit of complex III is among the potentially dys-regulated genes, the inner mitochondrial membrane is leaking protons, brain ATP levels seem reduced, and Rett patient blood samples confirm increased oxidative damage. We therefore screened for mitochondrial dysfunction and impaired redox balance. In hippocampal slices of a Rett mouse model (Mecp2(-/y)) we detected an increased FAD/NADH baseline-ratio indicating intensified oxidization. Cyanide-induced anoxia caused similar decreases in FAD/NADH ratio and mitochondrial membrane potential in both genotypes, but Mecp2(-/y) mitochondria seemed less polarized. Quantifying cytosolic redox balance with the genetically-encoded optical probe roGFP1 confirmed more oxidized baseline conditions, a more vulnerable redox-balance, and more intense responses of Mecp2(-/y) hippocampus to oxidative challenge and mitochondrial impairment. Trolox treatment improved the redox baseline of Mecp2(-/y) hippocampus and dampened its exaggerated responses to oxidative challenge. Microarray analysis of the hippocampal CA1 subfield did not detect alterations of key mitochondrial enzymes or scavenging systems. Yet, quantitative PCR confirmed a moderate upregulation of superoxide dismutase 1 in Mecp2(-/y) hippocampus, which might be a compensatory response to the increased oxidative burden. Since several receptors and ion-channels are redox-modulated, the mitochondrial and redox changes which already manifest in neonates could contribute to the hyperexcitability and diminished synaptic plasticity in MeCP2 deficiency. Therefore, targeting cellular redox balance might qualify as a potential pharmacotherapeutic approach to improve neuronal network function in Rett syndrome.

Pubmed ID: 22750529 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Agilent Technologies (tool)

RRID:SCR_013575

Company provides laboratories worldwide with analytical instruments and supplies, clinical and diagnostic testing services, consumables, applications and expertise in life sciences and applied chemical markets.

View all literature mentions

Imspector (tool)

RRID:SCR_018863

Software tool for real time analysis and data visualization. Software system for experimental control and quantitative data analysis in microscopy and spectroscopy.Integration of data processing and acquisition allows real time analysis and visualization of experimental results.

View all literature mentions