Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos.

PloS one | 2012

Previous studies have shown fertilization and development of marine species can be significantly inhibited when the pH of sea water is artificially lowered. Little mechanistic understanding of these effects exists to date, but previous work has linked developmental inhibition to reduced cleavage rates in embryos. To explore this further, we tested whether common cell cycle checkpoints were involved using three cellular biomarkers of cell cycle progression: (1) the onset of DNA synthesis, (2) production of a mitotic regulator, cyclin B, and (3) formation of the mitotic spindle. We grew embryos of the purple sea urchin, Strongylocentrotus purpuratus, in seawater artifically buffered to a pH of ∼7.0, 7.5, and 8.0 by CO(2) infusion. Our results suggest the reduced rates of mitotic cleavage are likely unrelated to common cell cycle checkpoints. We found no significant differences in the three biomarkers assessed between pH treatments, indicating the embryos progress through the G(1)/S, G(2)/M and metaphase/anaphase transitions at relatively similar rates. These data suggest low pH environments may not impact developmental programs directly, but may act through secondary mechanisms such as cellular energetics.

Pubmed ID: 22479526 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Suite of Nucleotide Analysis Programs (tool)

RRID:SCR_009399

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented September 29, 2016. A workbench tool to make existing population genetic software more accessible and to facilitate the integration of new tools for analyzing patterns of DNA sequence variation, within a phylogenetic context. Collectively, SNAP tools can serve as a bridge between theoretical and applied population genetic analysis. The exploration of DNA sequence variation for making inferences on evolutionary processes in populations requires the coordinated implementation of a Suite of Nucleotide Analysis Programs (SNAP), each bound by specific assumptions and limitations.

View all literature mentions