Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks.

PloS one | 2012

Almost all animal models for chronic rejection (CR) after lung transplantation (LTx) fail to resemble the human situation. It was our attempt to develop a representative model of CR in mice. Orthotopic LTx was performed in allografts receiving daily immunosuppression with steroids and cyclosporine. Controls included isografts and mice only undergoing thoracotomy (SHAM). Allografts were sacrificed 2, 4, 6, 8, 10 or 12 weeks after LTx. Pulmonary function was measured repeatedly in the 12w allografts, isografts and SHAM mice. Histologically, all allografts demonstrated acute rejection (AR) around the blood vessels and airways two weeks after LTx. This decreased to 50-75% up to 10 weeks and was absent after 12 weeks. Obliterative bronchiolitis (OB) lesions were observed in 25-50% of the mice from 4-12 weeks. Isografts and lungs of SHAM mice were normal after 12 weeks. Pulmonary function measurements showed a decline in FEV(0.1), TLC and compliance in the allografts postoperatively (2 weeks) with a slow recovery over time. After this initial decline, lung function of allografts increased more than in isografts and SHAM mice indicating that pulmonary function measurement is not a good tool to diagnose CR in a mouse. We conclude that a true model for CR, with clear OB lesions in about one third of the animals, but without a decline in lung function, is possible. This model is an important step forward in the development of an ideal model for CR which will open new perspectives in unraveling CR pathogenesis and exploring new treatment options.

Pubmed ID: 22238655 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions