Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

MT1-MMP modulates the mechanosensitivity of osteocytes.

Biochemical and biophysical research communications | 2012

Membrane-type matrix metalloproteinase-1 (MT1-MMP) is expressed by mechanosensitive osteocytes and affects bone mass. The extracellular domain of MT1-MMP is connected to extracellular matrix, while its intracellular domain is a strong modulator of cell signaling. In theory MT1-MMP could thus transduce mechanical stimuli into a chemical response. We hypothesized that MT1-MMP plays a role in the osteocyte response to mechanical stimuli. MT1-MMP-positive and knockdown (siRNA) MLO-Y4 osteocytes were mechanically stimulated with a pulsating fluid flow (PFF). Focal adhesions were visualized by paxillin immunostaining. Osteocyte number, number of empty lacunae, and osteocyte morphology were measured in long bones of MT1-MMP(+/+) and MT1-MMP(-/-) mice. PFF decreased MT1-MMP mRNA and protein expression in MLO-Y4 osteocytes, suggesting that mechanical loading may affect pericellular matrix remodeling by osteocytes. MT1-MMP knockdown enhanced NO production and c-jun and c-fos mRNA expression in response to PFF, concomitantly with an increased number and size of focal adhesions, indicating that MT1-MMP knockdown osteocytes have an increased sensitivity to mechanical loading. Osteocytes in MT1-MMP(-/-) bone were more elongated and followed the principle loading direction, suggesting that they might sense mechanical loading. This was supported by a lower number of empty lacunae in MT1-MMP(-/-) bone, as osteocytes lacking mechanical stimuli tend to undergo apoptosis. In conclusion, mechanical stimulation decreased MT1-MMP expression by MLO-Y4 osteocytes, and MT1-MMP knockdown increased the osteocyte response to mechanical stimulation, demonstrating a novel and unexpected role for MT1-MMP in mechanosensing.

Pubmed ID: 22202174 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

Applied Biosystems (tool)

RRID:SCR_005039

An Antibody supplier

View all literature mentions