Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Checkpoint signaling, base excision repair, and PARP promote survival of colon cancer cells treated with 5-fluorodeoxyuridine but not 5-fluorouracil.

PloS one | 2011

The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.

Pubmed ID: 22194930 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA084321
  • Agency: NCI NIH HHS, United States
    Id: P50-CA136393
  • Agency: NCI NIH HHS, United States
    Id: P50 CA136393
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM072474
  • Agency: NCI NIH HHS, United States
    Id: R01-CA084321
  • Agency: PHS HHS, United States
    Id: GT32-M072474

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Bethyl (tool)

RRID:SCR_013554

An Antibody supplier

View all literature mentions

HT-29 (tool)

RRID:CVCL_0320

Cell line HT-29 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HCT 116 (tool)

RRID:CVCL_0291

Cell line HCT 116 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions