Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia.

The Journal of cell biology | 2011

Establishment of epithelial polarity requires the reorganization of the microtubule (MT) cytoskeleton from a radial array into a network positioned along the apicobasal axis of the cell. Little is known about the mechanisms that spatially guide the remodeling of MTs during epithelial polarization. Septins are filamentous guanine triphosphatases (GTPases) that associate with MTs, but the function of septins in MT organization and dynamics is poorly understood. In this paper, we show that in polarizing epithelia, septins guide the directionality of MT plus end movement by suppressing MT catastrophe. By enabling persistent MT growth, two spatially distinct populations of septins, perinuclear and peripheral filaments, steer the growth and capture of MT plus ends. This navigation mechanism is essential for the maintenance of perinuclear MT bundles and for the orientation of peripheral MTs as well as for the apicobasal positioning of MTs. Our results suggest that septins provide the directional guidance cues necessary for polarizing the epithelial MT network.

Pubmed ID: 21788367 RIS Download

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM097664
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS048090
  • Agency: NINDS NIH HHS, United States
    Id: R56 NS048090
  • Agency: NINDS NIH HHS, United States
    Id: NS48090

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions

Volocity 3D Image Analysis Software (tool)

RRID:SCR_002668

3D image analysis software to visualize, analyze and validate 3D fluorescence images from a wide range of confocal microscopy, widefield and high content screening systems. It is fully integrated for a seamless user experience.

View all literature mentions

SlideBook (tool)

RRID:SCR_014300

Digital microscopy software for research microscopy. It comes standard with drivers to control numerous instruments in and around the microscope. When online, data is acquired in a native-3D format over time, color and specimen locations in customizable experiment protocols. Data can be analyzed by a wide variety of tools for image processing including mathematical operations, statistics functions, analysis scripting and import to/export from MATLAB. Additional modules are available for special applications ranging from deconvolution to photomanipulation to multiphoton.

View all literature mentions

Olympus FluoView 300 Confocal Microscope (tool)

RRID:SCR_020345

Confocal microscopy can improve conventional fluorescence images by recording fluorescence generated from the focal plane within the sample, while rejecting all other light coming from above or below the focal plane. The efficient point-scan/pinhole-detection confocal optics of the FluoView systems virtually eliminate out of focus light to produce high-contrast images with superb resolution. The FluoView systems are fully integrated workstations that incorporate user-friendly image acquisition and image analysis software with high-resolution confocal optics that require no user alignment. An , Windows-based graphic user interface allows new users to quickly generate images in various scan modes, such as XY, XZ, XT, XYZ, XYT, and XYZT. Standard image formats, including TIFF and AVI, permit easy, direct export of FluoView images to off-line analysis packages. XY scanning is performed with a pair of galvanometric mirrors, yielding a wide scanning range to cover up to a field number of 20. The optical zoom (up to 10x magnification) can be performed by narrowing the scanning range while maintaining the maximum pixel resolution of up to 2048 x 2048 pixels.

View all literature mentions

Olympus FluoView 300 Confocal Microscope (tool)

RRID:SCR_020339

Confocal microscopy can improve conventional fluorescence images by recording fluorescence generated from the focal plane within the sample, while rejecting all other light coming from above or below the focal plane. The efficient point-scan/pinhole-detection confocal optics of the FluoView systems virtually eliminate out of focus light to produce high-contrast images with superb resolution. The FluoView systems are fully integrated workstations that incorporate user-friendly image acquisition and image analysis software with high-resolution confocal optics that require no user alignment. An , Windows-based graphic user interface allows new users to quickly generate images in various scan modes, such as XY, XZ, XT, XYZ, XYT, and XYZT. Standard image formats, including TIFF and AVI, permit easy, direct export of FluoView images to off-line analysis packages. XY scanning is performed with a pair of galvanometric mirrors, yielding a wide scanning range to cover up to a field number of 20. The optical zoom (up to 10x magnification) can be performed by narrowing the scanning range while maintaining the maximum pixel resolution of up to 2048 x 2048 pixels.

View all literature mentions

MDCK (tool)

RRID:CVCL_0422

Cell line MDCK is a Spontaneously immortalized cell line with a species of origin Canis lupus familiaris

View all literature mentions