2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cytosine methylation alters DNA mechanical properties.

Nucleic acids research | 2011

DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through single-molecule force experiments and simulation we investigated the effects of methylation on strand separation of DNA, a crucial step in gene expression. Molecular force assay and single-molecule force spectroscopy revealed a strong methylation dependence of strand separation. Methylation is observed to either inhibit or facilitate strand separation, depending on methylation level and sequence context. Molecular dynamics simulations provided a detailed view of methylation effects on strand separation, suggesting the underlying physical mechanism. According to our study, methylation in epigenetics may regulate gene expression not only through mechanisms already known but also through changing mechanical properties of DNA.

Pubmed ID: 21775342 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: P41-RR005969
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM073655

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NAMD (tool)

RRID:SCR_014894

Parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR.

View all literature mentions