Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders.

Disease models & mechanisms | 2011

Human peroxisome biogenesis disorders are lethal genetic diseases in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined several clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis.

Pubmed ID: 21669930 RIS Download

Associated grants

  • Agency: Canadian Institutes of Health Research, Canada
    Id: 84154
  • Agency: Canadian Institutes of Health Research, Canada
    Id: 9208
  • Agency: Howard Hughes Medical Institute, United States

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cytoscape (tool)

RRID:SCR_003032

Software platform for complex network analysis and visualization. Used for visualization of molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.

View all literature mentions

FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions

French National Research Agency (tool)

RRID:SCR_011248

The ANR is a research funding organization. It was established by the French government in 2005 to fund research projects, based on competitive schemes giving researchers the best opportunities to realize their projects and paving the way for ground-breaking new knowledge. The role of the Agency is to bring more flexibility to the French research system, foster new dynamics and devise cutting edge-strategies for acquiring new knowledge. By identifying priority areas and fostering private-public collaborations, it also aims at enhancing the general level of competitiveness of both the French research system and the French economy. *The ANR supports the public and private-sector research community *Scientific departments

View all literature mentions

Oregon-R(R) (tool)

RRID:DGGR_109612

Drosophila melanogaster with name Oregon-R(R) from DGGR.

View all literature mentions