Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Epstein-Barr virus nuclear antigen 3C facilitates G1-S transition by stabilizing and enhancing the function of cyclin D1.

PLoS pathogens | 2011

EBNA3C, one of the Epstein-Barr virus (EBV)-encoded latent antigens, is essential for primary B-cell transformation. Cyclin D1, a key regulator of G1 to S phase progression, is tightly associated and aberrantly expressed in numerous human cancers. Previously, EBNA3C was shown to bind to Cyclin D1 in vitro along with Cyclin A and Cyclin E. In the present study, we provide evidence which demonstrates that EBNA3C forms a complex with Cyclin D1 in human cells. Detailed mapping experiments show that a small N-terminal region which lies between amino acids 130-160 of EBNA3C binds to two different sites of Cyclin D1- the N-terminal pRb binding domain (residues 1-50), and C-terminal domain (residues 171-240), known to regulate Cyclin D1 stability. Cyclin D1 is short-lived and ubiquitin-mediated proteasomal degradation has been targeted as a means of therapeutic intervention. Here, we show that EBNA3C stabilizes Cyclin D1 through inhibition of its poly-ubiquitination, and also increases its nuclear localization by blocking GSK3β activity. We further show that EBNA3C enhances the kinase activity of Cyclin D1/CDK6 which enables subsequent ubiquitination and degradation of pRb. EBNA3C together with Cyclin D1-CDK6 complex also efficiently nullifies the inhibitory effect of pRb on cell growth. Moreover, an sh-RNA based strategy for knock-down of both cyclin D1 and EBNA3C genes in EBV transformed lymphoblastoid cell lines (LCLs) shows a significant reduction in cell-growth. Based on these results, we propose that EBNA3C can stabilize as well as enhance the functional activity of Cyclin D1 thereby facilitating the G1-S transition in EBV transformed lymphoblastoid cell lines.

Pubmed ID: 21347341 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA137894
  • Agency: NCI NIH HHS, United States
    Id: R01 CA138434
  • Agency: NCI NIH HHS, United States
    Id: CA137894-02
  • Agency: NCI NIH HHS, United States
    Id: CA138434-02

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Harvard University; Cambridge; United States (tool)

RRID:SCR_011273

Institution of higher education in the United States. Private Ivy League research university in Cambridge, Massachusetts.

View all literature mentions

ImageQuant (tool)

RRID:SCR_014246

Software for automatic general image analysis. It provides fully automatic analysis of 1-D gels including lane creation, background subtraction, band detection, molecular weight calibration, quantity calibration, and normalization. Editing tools are provided for cropping, rotating, and filtering images.

View all literature mentions

BJAB (tool)

RRID:CVCL_5711

Cell line BJAB is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

U2OS (tool)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

SaOS-2 (tool)

RRID:CVCL_0548

Cell line SaOS-2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Ramos (tool)

RRID:CVCL_0597

Cell line Ramos is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions