Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways.

PloS one | 2010

Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called Sae1-Uba2), which activates Sumo's C-terminus, binds the dedicated E2 enzyme Ubc9, and promotes Sumo C-terminal transfer between the Uba2 and Ubc9 catalytic cysteines. To gain insights into details of E1-E2 interactions in the Sumo pathway, we determined crystal structures of the C-terminal ubiquitin fold domain (ufd) from yeast Uba2 (Uba2(ufd)), alone and in complex with Ubc9. The overall structures of both yeast Uba2(ufd) and Ubc9 superimpose well on their individual human counterparts, suggesting conservation of fundamental features of Sumo conjugation. Docking the Uba2(ufd)-Ubc9 and prior full-length human Uba2 structures allows generation of models for steps in Sumo transfer from Uba2 to Ubc9, and supports the notion that Uba2 undergoes remarkable conformational changes during the reaction. Comparisons to previous structures from the NEDD8 cascade demonstrate that UBL cascades generally utilize some parallel E1-E2 interaction surfaces. In addition, the structure of the Uba2(ufd)-Ubc9 complex reveals interactions unique to Sumo E1 and E2. Comparison with a previous Ubc9-E3 complex structure demonstrates overlap between Uba2 and E3 binding sites on Ubc9, indicating that loading with Sumo and E3-catalyzed transfer to substrates are strictly separate steps. The results suggest mechanisms establishing specificity and order in Sumo conjugation cascades.

Pubmed ID: 21209884 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: 5P30CA021765
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM077053
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM069530
  • Agency: NCI NIH HHS, United States
    Id: P30 CA021765
  • Agency: NIGMS NIH HHS, United States
    Id: R01GM069530

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Phaser (tool)

RRID:SCR_014219

Crystallographic software which solves structures using algorithms and automated rapid search calculations to perform molecular replacement and experimental phasing methods.

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Phenix (tool)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions

Refmac (tool)

RRID:SCR_014225

A molecular refinement program with two main modes: REVIEW, which checks and updates the input model to establish that the geometric restraints can be properly set up, and REFINE mode, which is the standard mode and documented in keywords. In REVIEW users can: check model coordinates and write an extended output set of coordinates, find disulphide bonds and other covalent links, cis-peptides, output the sequence and REMARK records. In REFINEMENT mode users can carry out rigid body, tls, restrained or unrestrained refinement against Xray data, or idealisation of a macromolecular structure. Also in REFINEMENT mode, Refmac produces an MTZ output file containing weighted coefficients for SigmaA weighted mFo-DFcalc and 2mFo-DFcalc maps. The program is supported by CCP4.

View all literature mentions