Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Causative agents of osteomyelitis induce death domain-containing TNF-related apoptosis-inducing ligand receptor expression on osteoblasts.

Bone | 2011

Bacteria and their products are potent inducers of bone destruction. While inflammatory damage during conditions such as osteomyelitis is associated with increased formation and activity of bone-resorbing osteoclasts, it is likely that bone loss also results from the elimination of the cells responsible for matrix deposition. Consistent with this notion, we have previously demonstrated that bone-forming osteoblasts undergo apoptosis following bacterial challenge and that this cell death is due, at least in part, to the actions of TNF-related apoptosis-inducing ligand (TRAIL). In the present study, we demonstrate that primary osteoblasts constitutively express death domain containing TRAIL receptors. Importantly, we show that cell surface expression of the death-inducing receptors DR4 and DR5 on murine and human osteoblasts is restricted to cells infected with the principle causative agents of osteomyelitis, Staphylococcus aureus and Salmonella. In addition, we show that the robust constitutive production by osteoblasts of the decoy TRAIL receptor, OPG, is inhibited following bacterial infection. Finally, we report that while exogenous administration of TRAIL fails to activate apoptosis signaling pathways in uninfected osteoblasts, acute bacterial exposure sensitizes these cells to this ligand. Based upon these findings we suggest a model in which bacterially challenged osteoblasts express TRAIL while concomitantly decreasing the production of the decoy receptor OPG and upregulating cell surface death receptor expression. Such an increase in TRAIL bioavailability and induced sensitivity of infected osteoblasts to this ligand would result in apoptotic cell death of this bone-forming population, providing an additional mechanism underlying inflammatory bone loss during diseases such as osteomyelitis.

Pubmed ID: 21130908 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mega BLAST (tool)

RRID:SCR_011920

Software that uses the greedy algorithm for nucleotide sequence alignment search.

View all literature mentions

oligo (tool)

RRID:SCR_015729

Software package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files).

View all literature mentions