Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

New technologies for the identification of novel genetic markers of disorders of sex development (DSD).

Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation | 2010

Although the genetic basis of human sexual determination and differentiation has advanced considerably in recent years, the fact remains that in most subjects with disorders of sex development (DSD) the underlying genetic cause is unknown. Where pathogenic mutations have been identified, the phenotype can be highly variable, even within families, suggesting that other genetic variants are influencing the expression of the phenotype. This situation is likely to change, as more powerful and affordable tools become widely available for detailed genetic analyses. Here, we describe recent advances in comparative genomic hybridisation, sequencing by hybridisation and next generation sequencing, and we describe how these technologies will have an impact on our understanding of the genetic causes of DSD.

Pubmed ID: 20820110 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 079666

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

Affymetrix (tool)

RRID:SCR_007817

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 17,2023. Affymetrix is a partially commercial resource that provides DNA Analysis Arrays, Expression Analysis Arrays, Gene Regulation Analysis, and Microarrays. It also provides reagents and assays, instruments, software, and services for a fee. Information is provided for Rats, Humans, and Mice.Affymetrix is now Applied Biosystems, brand of DNA microarray products sold by Thermo Fisher Scientific that originated with an American biotechnology research and development and manufacturing company of the same name.

View all literature mentions

Roche NimbleGen (tool)

RRID:SCR_008571

Roche NimbleGen, Inc. is a leading innovator, manufacturer and supplier of a proprietary suite of DNA microarrays, consumables, instruments and services. Roche NimbleGen uniquely produces high-density arrays of long oligo probes that provide greater information content and higher data quality necessary for studying the full diversity of genomic and epigenomic variation. Roche NimbleGen is enabling a new era of High-Definition Genomics by providing scientists with cost-effective, high-throughput tools for extracting and integrating complex data on important forms of genomic and epigenomic variation not previously accessible on a genome-wide scale. Scientists can thus obtain a clearer understanding of genomic and epigenomic structure and function and how they impact biology and medicine. This improved performance is made possible by Roche NimbleGen''s proprietary Maskless Array Synthesis (MAS) technology, which uses digital light processing and rapid, high-yield photochemistry to synthesize long oligo, high-density DNA microarrays with extreme flexibility. NimbleGen Systems was established in 1999. The MAS technology is the result of research collaborations between the departments of biotechnology, genetics, physics, and semiconductor engineering at the University of Wisconsin - Madison. Roche NimbleGen has the exclusive worldwide license to the MAS technology from the Wisconsin Alumni Research Foundation (WARF).

View all literature mentions

Agilent Technologies (tool)

RRID:SCR_013575

Company provides laboratories worldwide with analytical instruments and supplies, clinical and diagnostic testing services, consumables, applications and expertise in life sciences and applied chemical markets.

View all literature mentions