Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Statistical learning analysis in neuroscience: aiming for transparency.

Frontiers in neuroscience | 2010

Encouraged by a rise of reciprocal interest between the machine learning and neuroscience communities, several recent studies have demonstrated the explanatory power of statistical learning techniques for the analysis of neural data. In order to facilitate a wider adoption of these methods, neuroscientific research needs to ensure a maximum of transparency to allow for comprehensive evaluation of the employed procedures. We argue that such transparency requires "neuroscience-aware" technology for the performance of multivariate pattern analyses of neural data that can be documented in a comprehensive, yet comprehensible way. Recently, we introduced PyMVPA, a specialized Python framework for machine learning based data analysis that addresses this demand. Here, we review its features and applicability to various neural data modalities.

Pubmed ID: 20582270 RIS Download

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NIPS - Neural Information Processing Systems Conference (tool)

RRID:SCR_001998

The Neural Information Processing Systems (NIPS) Foundation is a non-profit corporation whose purpose is to foster the exchange of research on neural information processing systems in their biological, technological, mathematical, and theoretical aspects. Neural information processing is a field which benefits from a combined view of biological, physical, mathematical, and computational sciences. The primary focus of the NIPS Foundation is the presentation of a continuing series of professional meetings known as the Neural Information Processing Systems Conference, held over the years at various locations in the United States and Canada.

View all literature mentions

FSL (tool)

RRID:SCR_002823

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

View all literature mentions

neurodebian (tool)

RRID:SCR_004401

Collection based on a collaborative effort of popular neuroscience research software for the Debian operating system as well as Ubuntu and other derivatives. Popular packages include AFNI, FSL, PyMVPA and many others. It contains both unofficial or prospective packages which are not (yet) available from the main Debian archive, as well as backported or simply rebuilt packages also available elsewhere. A listing of current and planned projects is available if you want to get involved. The main goal of the project is to provide a versatile and convenient environment for neuroscientific research that is based on open-source software. To this end, the project offers a package repository that complements the main Debian (and Ubuntu) archive. NeuroDebian is not yet another Linux distribution, but rather an effort inside the Debian project itself. Software packages are fully integrated into the Debian system and from there will eventually migrate into Ubuntu as well. With NeuroDebian, installing and updating neuroscience software is no different from any other part of the operating system. Maintaining a research software environment becomes as easy as installing an editor. There is also virtual machine to test NeuroDebian on Windows or Mac OS. If you want to see your software packaged for Debian, please drop them a note.

View all literature mentions

Analysis of Functional NeuroImages (tool)

RRID:SCR_005927

Set of (mostly) C programs that run on X11+Unix-based platforms (Linux, Mac OS X, Solaris, etc.) for processing, analyzing, and displaying functional MRI (FMRI) data defined over 3D volumes and over 2D cortical surface meshes. AFNI is freely distributed as source code plus some precompiled binaries.

View all literature mentions

PyMVPA (tool)

RRID:SCR_006099

A Python package intended to ease statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is truly free software (in every respect) and additionally requires nothing but free-software to run. Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. This Python-based, cross-platform, open-source software toolbox software toolbox for the application of classifier-based analysis techniques to fMRI datasets makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages.

View all literature mentions

Brain Innovation: Home of the BrainVoyager Product Family (tool)

RRID:SCR_006660

Brain Innovation B.V. is developing scientific software in the field of human and animal brain imaging, neural network simulation and computer-based experimental control. Our current major product, BrainVoyager QX, is a commercially available cross-platform neuroimaging tool, which is used in hundreds of labs across the planet. Turbo-BrainVoyager is an easy to use program for real-time data analysis, which allows to observe a subject''s or patient''s brain activity during an ongoing functional MRI scanning session. TMS Neuronavigator provides the hard- and software to navigate a TMS coil to desired anatomical or functionally defined brain regions. We also provide free software products. BrainVoyager Brain Tutor allows to learn about brain areas by clicking on rotatable 3D brain models. StimulDX is a powerful stimulation software based on Microsofts DirectX API, which we will make available for free download in the near future.

View all literature mentions