Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4.

The EMBO journal | 2010

Meiotic progression is driven by the sequential translational activation of maternal messenger RNAs stored in the cytoplasm. This activation is mainly induced by the cytoplasmic elongation of their poly(A) tails, which is mediated by the cytoplasmic polyadenylation element (CPE) present in their 3' untranslated regions. Although polyadenylation in prophase I and metaphase I is mediated by the CPE-binding protein 1 (CPEB1), this protein is degraded during the first meiotic division. Thus, raising the question of how the cytoplasmic polyadenylation required for the second meiotic division is achieved. In this work, we show that CPEB1 generates a positive loop by activating the translation of CPEB4 mRNA, which, in turn, replaces CPEB1 and drives the transition from metaphase I to metaphase II. We further show that CPEB1 and CPEB4 are differentially regulated by phase-specific kinases, generating the need of two sequential CPEB activities to sustain cytoplasmic polyadenylation during all the meiotic phases. Altogether, this work defines a new element in the translational circuit that support an autonomous transition between the two meiotic divisions in the absence of DNA replication.

Pubmed ID: 20531391 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PhosphoSitePlus: Protein Modification Site (tool)

RRID:SCR_001837

A freely accessible on-line systems biology resource devoted to all aspects of protein modification, as well as other post-translational modifications. It provides valuable and unique tools for both cell biologists and mass spectroscopists. PhosphoSite is a human- and mouse-centric database. It includes features such as: viewing the locations of modified residues on molecular models; browsing and searching MS2 records by disease, tissue, and cell line; submitting lists of peptides to identify previously reported genes; searching by sub-cellular localization, treatment, tissues, cell types, cell lines and diseases, and protein types and protein domains; searching for experimentally-verified kinase substrates and viewing preferred substrate motifs; and viewing MS2 spectra for peptides and sites not previously published.

View all literature mentions