Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Bioinformatics in new generation flavivirus vaccines.

Journal of biomedicine & biotechnology | 2010

Flavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce morbidity and mortality associated with flavivirus infections. Despite the success of the empirically developed vaccines against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus, there is an increasing need for a more rational design and development of safe and effective vaccines. Several bioinformatic tools are available to support such rational vaccine design. In doing so, several parameters have to be taken into account, such as safety for the target population, overall immunogenicity of the candidate vaccine, and efficacy and longevity of the immune responses triggered. Examples of how bio-informatics is applied to assist in the rational design and improvements of vaccines, particularly flavivirus vaccines, are presented and discussed.

Pubmed ID: 20467477 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Vienna RNA (tool)

RRID:SCR_008550

This server provides programs, web services, and databases, related to our work on RNA secondary structures. For general information and other offerings from our group see the main TBI web server. With the 1st of May 2009 we updated our servers to the Vienna RNA package version 1.8.2! The Vienna RNA Servers: * RNAfold server predicts minimum free energy structures and base pair probabilities from single RNA or DNA sequences. * RNAalifold server predicts consensus secondary structures from an alignment of several related RNA or DNA sequences. You need to upload an alignment. * RNAinverse server allows you to design RNA sequences for any desired target secondary structure. * RNAcofold server allows you to predict the secondary structure of a dimer. * RNAup server allows you to predict the accessibility of a target region. * LocARNA server generates structural alignments from a set of sequences. In collaboration with the Bioinformatics Group Freiburg. * barriers server allows you to get insights into RNA folding kinetics. * RNAz server will assist you in detecting thermodynamically stable and evolutionarily conserved RNA secondary structures in multiple sequence alignments. * Structure conservation analysis server will assist you in detecting evolutionarily conserved RNA secondary structures in multiple sequence alignments. * RNAstrand server allows you to predict the reading direction of evolutionarily conserved RNA secondary structures. * RNAxs server assists you in siRNA design. * Bcheck predicts rnpB genes Downloads Get the Source code for: * the Vienna RNA Package, our basic RNA secondary structure analysis software. * The ALIDOT package for finding conserved structure motifs (add-on) * The barriers program for analysis of RNA folding landscapes. Databases * Atlas of conserved Viral RNA Structures found by ALIDOT

View all literature mentions

SYFPEITHI: A Database for MHC Ligands and Peptide Motifs (tool)

RRID:SCR_013182

SYFPEITHI is a database comprising more than 7000 peptide sequences known to bind class I and class II MHC molecules. The entries are compiled from published reports only. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database is based on previous publications on T-cell epitopes and MHC ligands. It contains information on: -Peptide sequences -anchor positions -MHC specificity -source proteins, source organisms -publication references Since the number of motifs continuously increases, it was necessary to set up a database which facilitates the search for peptides and allows the prediction of T-cell epitopes. The prediction is based on published motifs (pool sequencing, natural ligands) and takes into consideration the amino acids in the anchor and auxiliary anchor positions, as well as other frequent amino acids. The score is calculated according to the following rules: The amino acids of a certain peptide are given a specific value depending on whether they are anchor, auxiliary anchor or preferred residue. Ideal anchors will be given 10 points, unusual anchors 6-8 points, auxiliary anchors 4-6 and preferred residues 1-4 points. Amino acids that are regarded as having a negative effect on the binding ability are given values between -1 and -3. Sponsors: SYFPEITHI is supported by DFG-Sonderforschungsbereich 685 and theEuropean Union: EU BIOMED CT95-1627, BIOTECH CT95-0263, and EU QLQ-CT-1999-00713.

View all literature mentions